TY - JOUR T1 - Research progress in magnesium matrix composites: A review of experimental studies TT - Magnezyum matrisli kompozitlerdeki gelişmeler: Deneysel çalışmaların incelenmesi AU - Aydın, Fatih PY - 2025 DA - June Y2 - 2025 JF - DCE Doğa Bilimleri Dergisi JO - NSJ-ISI PB - Karabük Üniversitesi WT - DergiPark SP - 1 EP - 12 VL - 6 IS - 1 LA - en AB - In recent years, the need for lightweight materials has been increasing, and researchers have been working to develop high-performance, low-weight materials. Magnesium (Mg) matrix composites have great potential for use in the aerospace, automotive and biomedical fields owing to their low density, high specific strength and good wear performance. Ceramic reinforcements are widely used for the production of Mg matrix composites, and additive manufacturing methods have been used in recent years, along with traditional methods such as stir casting and powder metallurgy. The production method, production parameters, reinforcement type, size and content directly affect the properties of the produced composites. This study examines the mechanical, wear and corrosion performances of Mg matrix composites. In addition, detailed information is provided in this study regarding the challenges, solutions and future work suggestions related to Mg matrix composites. KW - Mg matrix composites KW - microstructure KW - mechanical KW - wear KW - corrosion N2 - Son yıllarda hafif malzemelere olan ihtiyaç giderek artmakta olup araştırmacılar yüksek performanslı düşük ağırlıklı malzemeler geliştirmek için çalışmaktadır. Magnezyum (Mg) matrisli kompozitler düşük yoğunluk, yüksek spesifik mukavemet, iyi aşınma performansları sayesinde havacılık, otomotiv ve biyomedikal alanlarında büyük kullanım potansiyeline sahiptir. Mg matrisli kompozitlerin üretimi için seramik takviyeler yaygın olarak kullanılmakta olup, karıştırma döküm ve toz metalurjisi gibi geleneksel yöntemlerle beraber eklemeli imalat yöntemleri de son yıllarda kullanılmaktadır. Üretim yöntemi, üretim parametreleri, takviye çeşidi, takviye partikül boyutu, takviye oranı, üretilen kompozitlerin özelliklerini doğrudan etkilemektedir. Bu çalışma, Mg matrisli kompozitlerin mekanik, aşınma ve korozyon performanslarını incelemektedir. Ayrıca, bu çalışmada Mg matrisli kompozitlerle ilgili kısıtlamalar, çözüm yolları, gelecekteki çalışma önerileri ilgili de ayrıntılı bilgi verilmiştir. CR - [1] Ren J-Y, Ji G-C, Guo H-R, Zhou Y-M, Tan X, Zheng W-F, Xing Q, Zhang J-Y, Sun J-R, Yang H-Y, Qiu F, Jiang Q-C. Nano-enhanced phase reinforced magnesium matrix composites: a review of the matrix, reinforcement, ınterface design, properties and potential applications. Materials. 2024; 17(10):2454. https://doi.org/10.3390/ma17102454 CR - [2] Zhang YZ, Dong BX, Wang CG, Yan BC, Yang HY, Qiu F, Shu S-L, Jiang QC. Review on manufacturability and strengthening mechanisms of particulate reinforced Mg composites. Journal of Materials Research and Technology. 2024; 30, 3152-3177. https://doi.org/10.1016/j.jmrt.2024.04.021 CR - [3] Abazari S, Shamsipur A, Bakhsheshi-Rad HR, Drelich JW, Goldman J, Sharif S, Ismail AF, Razzaghi M. Magnesium-based nanocomposites: a review from mechanical, creep and fatigue properties. Journal of Magnesium and Alloys, 2023; 11(8), 2655-2687. https://doi.org/10.1016/j.jma.2023.08.005 CR - [4] Aydin F. Effect of solid waste materials on properties of magnesium matrix composites-A systematic review. Journal of Magnesium and Alloys, 2022;10(10), 2673-2698. https://doi.org/10.1016/j.jma.2022.09.005 CR - [5] Yang Y, Xiong X, Chen J, Peng X, Chen D, Pan F. Research advances of magnesium and magnesium alloys worldwide in 2022. Journal of Magnesium and Alloys, 2023; 11(8), 2611-2654. https://doi.org/10.1016/j.jma.2023.07.011 CR - [6] Ebrahimi M, Wang Q, Attarilar S. A comprehensive review of magnesium-based alloys and composites processed by cyclic extrusion compression and the related techniques. Progress in Materials Science. 2023; 131, 101016. https://doi.org/10.1016/j.pmatsci.2022.101016 CR - [7] Aydın F. Tribological aspects of magnesium matrix composites: a review of recent experimental studies. Tribology-Materials, Surfaces & Interfaces, 2023; 17(4), 363-396. https://doi.org/10.1080/17515831.2023.2246809 CR - [8] Guan H, Xiao H, Ouyang S, Tang A, Chen X, Tan J, Feng B, She J, Zheng K, Pan F. A review of the design, processes, and properties of Mg-based composites. Nanotechnology Reviews, 2022; 11(1), 712-730. https://doi.org/10.1515/ntrev-2022-0043 CR - [9] Luo Y X, Dong BX, Yang HY, Qiu F, Yan BC, Shu SL, Jiang QC, Shi FJ. Research progress on nanoparticles reinforced magnesium alloys. Journal of Materials Research and Technology. 2024; 30, 5166-5191. https://doi.org/10.1016/j.jmrt.2024.04.129 CR - [10] Khatkar SK. Hybrid magnesium matrix composites: A review of reinforcement philosophies, mechanical and tribological characteristics. Reviews on Advanced Materials Science, 2023; 62, 20220294. https://doi.org/10.1515/rams-2022-0294 CR - [11] Yang H, Chen X, Huang G, Song J, She J, Tan J, Zheng K, Jin Y, Jiang B, Pan, F. Microstructures and mechanical properties of titanium-reinforced magnesium matrix composites: Review and perspective. Journal of Magnesium and Alloys, 2022; 10(9), 2311-2333. https://doi.org/10.1016/j.jma.2022.07.008 CR - [12] Aydın F. Recent advances in mechanical properties of Mg matrix composites: a review. Materials Science and Technology, 2024; 40(5), 339-376. https://doi.org/10.1177/02670836241229025 CR - [13] Aydın F. Recent advances in the corrosion performance of magnesium matrix composites: A review. Canadian Metallurgical Quarterly, 2025; 64(2), 576-604. https://doi.org/10.1080/00084433.2024.2366700 CR - [14] Abazari S, Shamsipur A, Bakhsheshi-Rad HR, Ismail AF, Sharif S, Razzaghi M, Ramakrishna S, Berto F. Carbon nanotubes (CNTs)-reinforced magnesium-based matrix composites: A comprehensive review. Materials, 2020; 13(19), 4421. https://doi.org/10.3390/ma13194421 CR - [15] Pillari LK, Lessoway K, Bichler L. Carbon nanotube and graphene reinforced magnesium matrix composites: a state-of-the-art review. Journal of Magnesium and Alloys, (2023); 11(6), 1825-1905. https://doi.org/10.1016/j.jma.2023.05.010 CR - [16] Meher A, Mahapatra MM, Samal P, Vundavilli PR. A review on manufacturability of magnesium matrix composites: Processing, tribology, joining, and machining. CIRP Journal of Manufacturing Science and Technology, 2022; 39, 134-158. https://doi.org/10.1016/j.cirpj.2022.07.012 CR - [17] Zhang C, Li Z, Zhang J, Tang H., Wang H. Additive manufacturing of magnesium matrix composites: Comprehensive review of recent progress and research perspectives. Journal of Magnesium and Alloys, 2023; 11(2), 425-461. https://doi.org/10.1016/j.jma.2023.02.005 CR - [18] Zhao Z, Zhang T, Yang Q, Li M, Li J. Sintering and densification mechanism of SiC particle reinforced AZ91D magnesium matrix composite materials owing binder jetting. Powder Technology, 2025; 452, 120609. https://doi.org/10.1016/j.powtec.2025.120609 CR - [19] Wu Y, Zhou B, Liu J, Zhu T, Wang J, Zhu G, Wang J. Investigation of the deformation behavior of titanium-particle-reinforced magnesium matrix composites through in situ synchrotron radiation diffraction. Materials Today Communications, 2025; 43, 111811. https://doi.org/10.1016/j.mtcomm.2025.111811 CR - [20] Li MY, Li XJ., Shi HL, Xu WQ, Chi FH, Hu XS, Xu C, Fan GH, Wang XJ. The effect of graphene nanoplatelets on the aging precipitation behavior and mechanical properties of magnesium matrix composite. Journal of Alloys and Compounds, 2025; 1010, 177498. https://doi.org/10.1016/j.jallcom.2024.177498 CR - [21] Feng Y, Sun C, Xu S, Liu J, Qian L. Microstructure and mechanical properties of strength-ductility synergetic SiC/ZK60 composites by a pre-dispersion strategy. Journal of Alloys and Compounds, 2025; 1010, 177702. https://doi.org/10.1016/j.jallcom.2024.177702 CR - [22] Fan L, Ren L, Zhu Z, Huang Y, Zhao F, Zeng Y, Feng W, Quan G, Dieringa, H. Microstructure evolution and hot deformation behavior of TiC nanoparticles reinforced AZ61 composite with bimodal grain structure. Journal of Alloys and Compounds, 2025; 1014, 178696. https://doi.org/10.1016/j.jallcom.2025.178696 CR - [23] Yu Z, Zheng K, Li X, Xu J, Sun J, Zhou N, Pan F. Improvement of strength and ductility of TC4p/AZ91D magnesium matrix composites by modifying the extrusion ratio. Journal of Magnesium and Alloys, 2025; 13, 746-759. https://doi.org/10.1016/j.jma.2024.03.006 CR - [24] Xi L, Tian S, Jia J, Zhong Z, Zhang D, Li Z, Hou J, Shi K, Gu D. Enhanced manufacturing quality and mechanical performance of laser powder bed fused TiC/AZ91D magnesium matrix composites. Journal of Magnesium and Alloys. 2025; https://doi.org/10.1016/j.jma.2024.12.012 CR - [25] Yang Q, Li X, Xu J, Yin C, Zhang X, Yang H, Zhou N, Zhang J, Zheng K, Jiang B, Pan, F. Effect of SiC particles on the microstructures and mechanical properties of Mg–9Al–1Zn based composites. Journal of Alloys and Compounds, 2025; 1016 178908. https://doi.org/10.1016/j.jallcom.2025.178908 CR - [26] Kelen F, Gavgali M, Aydoğmuş T. TiNi Particle‐Reinforced Magnesium Matrix Composites: Production, Microstructure, Phase Transformations, and Mechanical Properties. Advanced Engineering Materials, 2025; 27(5), 2402277. https://doi.org/10.1002/adem.202402277 CR - [27] Sagar P, Rani S, Kumar M, Ashokkumar M. Hybrid algorithmic techniques for optimizing tensile strength in magnesium-based composites developed via friction stir processing. Multiscale and Multidisciplinary Modeling, Experiments and Design, 2025; 8, 146. https://doi.org/10.1007/s41939-025-00726-1 CR - [28] Li CP, Li YQ, Li CF, Chen HY, Ma YL. Effect of SiC on Microstructure and Mechanical Properties of Nano-SiC/Mg-8Al-1Sn Composites. Journal of Materials Engineering and Performance, 2025; 34, 3884-3893. https://doi.org/10.1007/s11665-024-09372-z CR - [29] Yan Z, Yu Y, Zhang W, Zhou H. Preparation of a bimodal grain-structured 0.4 GNPs/Mg-8Al-1Sm composites via adjusting the extrusion temperature. Journal of Materials Science, 2025; 60, 2363-2387. https://doi.org/10.1007/s10853-025-10625-y CR - [30] Sahoo SK, Ramesh MR, Panigrahi SK. Establishing high temperature tribological performance and wear mechanism map of engineered in-situ TiB2 reinforced Mg-RE metal matrix composites. Tribology International, 2025; 201, 110189. https://doi.org/10.1016/j.triboint.2024.110189 CR - [31] Sahoo SK, Panigrahi SK. Synergetic effect of in-situ TiB2 reinforcement and nano precipitation on wear behavior of ZE41 magnesium matrix composite. Wear, 2025; 560, 205609. https://doi.org/10.1016/j.wear.2024.205609 CR - [32] Asano M, Hirayama T, Somekawa H, Matsuoka T. Sudden drop in friction coefficient of extruded Mg matrix composites. Ceramics International. 2025; 51, 15043-15048. https://doi.org/10.1016/j.ceramint.2025.01.295 CR - [33] Krishnan BR, Ramesh M, Subramaniyan GG, Irudayaraj S, Vellaichamy R Mechanical and metallurgical behavior of magnesium-tungsten carbide nanocomposite. Interactions, 2025; 246, 37. https://doi.org/10.1007/s10751-025-02258-z CR - [34] Jhamb SK, Goyal A, Pandey, A. Tribological Behaviour of Mg-1%Sn-X%HA Composites for Biomedical Application. Journal of Bio-and Tribo-Corrosion, 2025; 11(1), 17. https://doi.org/10.1007/s40735-024-00930-5 CR - [35] Sekar P, Sahoo SK, Panigrahi SK. Insights into stress corrosion cracking behaviour of in situ TiB2 reinforced Mg-RE metal matrix composite. Engineering Failure Analysis, 2025; 170, 109301. https://doi.org/10.1016/j.engfailanal.2025.109301 CR - [36] Wang M, Sun X, Yang J, Wang Y, Song S, Shi Z, Sun D, Li D, Chen J, Wang, C. Visible UCNPs-magnesium matrix composites for optimizing degradation and improving bone regeneration. Biomaterials Advances, 2025; 170, 214223. https://doi.org/10.1016/j.bioadv.2025.214223 CR - [37] Sánchez-Arroyo A, Rodríguez-Reyes M, Olvera-Romero GD, Parga-Torres JR, Matamoros-Veloza Z, Villarreal-Fuentes BO, Vázquez-Obregón D. Recycling cupola slag for manufacturing magnesium metal matrix composites with alumina for electric vehicle battery pack system housings. Next Sustainability, 2025; 6, 100103. https://doi.org/10.1016/j.nxsust.2025.100103 CR - [38] Shen G, Lyu S, Yu Q, Wang X, Chen, M. Investigating the mechanical properties and corrosion resistance of extruded Mg-1Zn-xCaO (x= 0, 0.5, 1.0 wt%) materials. Journal of Alloys and Compounds, 2025; 1010, 177174. https://doi.org/10.1016/j.jallcom.2024.177174 CR - [39] Gao S, Lyu S, Zhao Q, Chen M. Effect of Extrusion Temperature on the Microstructure and Properties of Biomedical Mg-1Zn-0.4Ca-1MgO Composite. Metals, 2025; 15(3), 337. https://doi.org/ 10.3390/met15030337 CR - [40] Ding C, Hu X, Shi H, Gan W, Wu K, Wang X. Development and strengthening mechanisms of a hybrid CNTs@SiCp/Mg-6Zn composite fabricated by a novel method. Journal of Magnesium and Alloys, 2021; 9(4), 1363-1372. https://doi.org/10.1016/j.jma.2020.05.012 CR - [41] Kordijazi A, Zhao T, Zhang J, Alrfou K, Rohatgi, P. A review of application of machine learning in design, synthesis, and characterization of metal matrix composites: current status and emerging applications. JOM, 2021; 73, 2060-2074. https://doi.org/10.1007/s11837-021-04701-2 CR - [42] Aydın F, Karaoğlan KM, Pektürk HY, Demir B, Karakurt V, Ahlatçı H. The comparative evaluation of the wear behavior of epoxy matrix hybrid nano-composites via experiments and machine learning models. Tribology International, 2025; 204, 110451. https://doi.org/10.1016/j.triboint.2024.110451 CR - [43] Bishara D, Xie Y, Liu WK, Li S. A state-of-the-art review on machine learning-based multiscale modeling, simulation, homogenization and design of materials. Archives of computational methods in engineering, 2023; 30, 191-222. https://doi.org/10.1007/s11831-022-09795-8 CR - [44] Aydin F. The investigation of the effect of particle size on wear performance of AA7075/Al2O3 composites using statistical analysis and different machine learning methods. Advanced Powder Technology, 2021; 32(2), 445-463. https://doi.org/10.1016/j.apt.2020.12.024 CR - [45] Aydin F, Durgut R. Estimation of wear performance of AZ91 alloy under dry sliding conditions using machine learning methods. Transactions of Nonferrous Metals Society of China, 2021; 31(1), 125-137. https://doi.org/10.1016/S1003-6326(20)65482-6 CR - [46] Singh N, Belokar RM. Tribological behavior of aluminum and magnesium-based hybrid metal matrix composites: a state-of-art review. Materials Today: Proceedings, 2021; 44(1), 460-466. https://doi.org/10.1016/j.matpr.2020.09.757 CR - [47] Banerjee S, Sahoo P, Davim JP. Tribological characterisation of magnesium matrix nanocomposites: a review. Advances in Mechanical Engineering, 2021; 13(4), 1-39. 16878140211009025. https://doi.org/10.1177/16878140211009025 CR - [48] Aydin F, Sun Y. Microstructure and wear of a sintered composite with a magnesium alloy AZ91 matrix reinforced with ZrO2 particles. Metal Science and Heat Treatment, 2019; 61(5), 325-329. https://doi.org/10.1007/s11041-019-00424-z CR - [49] Aydın F. Recent Progress in Aluminium Matrix Composites: A Review on Tribological Performance. Transactions of the Indian Institute of Metals, 2024; 77(8), 1907-1922. https://doi.org/10.1007/s12666-024-03306-y CR - [50] Kumar PS, Ponappa K, Udhayasankar M, Aravindkumar B. Dry sliding wear and mechanical characterization of Mg based composites by uniaxial cold press technique. Archives of Metallurgy and Materials. 2017; 62, 1851-1856. DOI:10.1515/amm-2017-0280 CR - [51] Turan ME, Aydin F. Wear and corrosion properties of low-cost eggshell-reinforced green AZ91 matrix composites. Canadian Metallurgical Quarterly, 2022; 61(2), 155-171. https://doi.org/10.1080/00084433.2022.2035634 CR - [52] Turan ME, Sun Y, Aydin F, Zengin H, Turen Y, Ahlatci H. Effects of carbonaceous reinforcements on microstructure and corrosion properties of magnesium matrix composites. Materials Chemistry and Physics, 2018; 218, 182-188. https://doi.org/10.1016/j.matchemphys.2018.07.050 CR - [53] Delavar H, Mostahsan AJ, Ibrahim, H. Corrosion and corrosion-fatigue behavior of magnesium metal matrix composites for bio-implant applications: A review. Journal of Magnesium and Alloys, 2023; 11(4), 1125-1161. https://doi.org/10.1016/j.jma.2023.04.010 CR - [54] Demirdal S, Aydın F. The influence of low-cost eggshell on the wear and electrochemical corrosion behaviour of novel pure Mg matrix composites. Materials Chemistry and Physics, 2022; 277, 125520. https://doi.org/10.1016/j.matchemphys.2021.125520 CR - [55] Esmaily M, Svensson JE, Fajardo S, Birbilis N, Frankel GS, Virtanen S, Arrabal R, Thomas S, Johansson LG. Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science, 2017; 89, 92-193. https://doi.org/10.1016/j.pmatsci.2017.04.011 CR - [56] Atrens A, Chen X, Shi Z. Mg corrosion—recent progress. Corrosion and Materials Degradation, 2022; 3(4), 566-597. https://doi.org/10.3390/cmd3040031 CR - [57] Aydin F, Sun Y, Turan ME. Influence of TiC content on mechanical, wear and corrosion properties of hot-pressed AZ91/TiC composites. Journal of Composite Materials, 2020; 54(2), 141-152. https://doi.org/10.1177/0021998319860570 CR - [58] Krishnan R, Pandiaraj S, Muthusamy S, Panchal H, Alsoufi MS, Ibrahim AMM, Elsheikh A. Biodegradable magnesium metal matrix composites for biomedical implants: synthesis, mechanical performance, and corrosion behavior–a review. Journal of Materials Research and Technology, 2022; 20, 650-670. https://doi.org/10.1016/j.jmrt.2022.06.178 UR - https://dergipark.org.tr/tr/pub/nsjisi/issue//1694961 L1 - https://dergipark.org.tr/tr/download/article-file/4850244 ER -