TY - JOUR T1 - BULUT MASKELEME UYGULAMASININ YER YÜZEY SICAKLIĞI TAHMİNLERİNİN GÜVENİLİRLİĞİNE ETKİSİ TT - THE IMPACT OF CLOUD MASKING ON THE RELIABILITY OF LAND SURFACE TEMPERATURE ESTIMATES AU - Korkmaz, Mehmet Seren AU - Çalışkan, Ali AU - Aksoy, Atanur PY - 2025 DA - June Y2 - 2025 JF - Atmosfer ve İklim Dergisi JO - JAC PB - İstanbul Teknik Üniversitesi WT - DergiPark SN - 3023-8560 SP - 37 EP - 47 VL - 2 IS - 1 LA - tr AB - Yer Yüzey Sıcaklığı (YYS) verileri, özellikle iklim değişikliğiyle ilgili çalışmalar başta olmak üzere birçok araştırma alanında yaygın şekilde kullanılmaktadır. Bu veri setleri, çeşitli algoritmalar ve yöntemlerle hesaplanarak farklı çevrimiçi platformlar aracılığıyla kullanıcılara sunulmaktadır. Ancak bu mekânsal veriler, atmosferin üst katmanlarında faaliyet gösteren uzaktan algılama araçlarıyla elde edildiğinden, atmosfer kolonunda farklı yükseklik ve türlerde bulunan bulutların etkisine sıklıkla maruz kalmaktadır. Bu nedenle, tüm bölgeler için yüksek doğrulukta YYS değerleri üretmek çoğu zaman mümkün olmamaktadır. Bu sorunun çözümü için çeşitli bulut maskeleme teknikleri geliştirilmiştir. Bu çalışma kapsamında, bulut örtüsünün YYS hesaplanması üzerindeki etkisi Landsat 8 Seviye 1 verilerinden faydalanılarak incelenmiştir. Coğrafi Bilgi Sistemleri araçları yardımıyla kolaylıkla uygulanabilen pratik bir bulut maskeleme yöntemi, yaz mevsimine ait üç farklı Landsat 8 Seviye 1 görüntüsüne uygulanmıştır. Haziran, Temmuz ve Ağustos aylarına ait, farklı yıllardan temin edilen Landsat 8 Seviye 1 uydu ürünleri, Ankara ilinin dokuz merkez ilçesi için kullanılmıştır. Çalışma sonuçları, bulut maskelemesi uygulanmadan kullanılan YYS katmanlarının, gerçek yüzey koşullarıyla uyuşmayan, gerçek dışı derecede düşük minimum sıcaklık değerleri ürettiğini göstermektedir. Bu durum, tüm mekânsal veri kümesinde ortalama yüzey sıcaklıklarının hesaplanmasında önemli hatalara yol açmaktadır. Çalışmada, maskeleme yapılmış ve yapılmamış katmanlar arasındaki ortalama YYS farkı %3,63 olarak hesaplanmıştır. Ancak daha çarpıcı olan bulgu, minimum sıcaklıklar arasındaki farkın 24 °C’ye kadar ulaşmasıdır. Son yıllarda araştırmacılar bulut filtreleme algoritmaları ve maskeleme yöntemlerini giderek daha fazla kullanmaya başlasa da aylık, yıllık veya başka dönemsel olarak üretilen mekânsal veri setlerinde bu işlemler çoğu zaman göz ardı edilmektedir. Bunun bir sonucu olarak, üretilen YYS haritaları gerçek yüzey koşullarını tam olarak yansıtmayabilir. Bu nedenle, sıklıkla referans alınan ve YYS verilerinden türetilen Kentsel Isı Adası (Urban Heat Island - UHI) haritalarında da yanlış temsil durumu ortaya çıkabilmektedir. Bunun önüne geçmek için indirilen tüm görüntülere mutlaka bulut maskeleme işlemi yapılmalıdır. KW - Yer Yüzey Sıcaklığı KW - Landsat 8 KW - Bulut Maskeleme. N2 - Land Surface Temperature (LST) data are widely utilized in many research fields, particularly in studies related to climate change. These datasets are often made available to users through various online platforms, calculated using different formulations and methods. However, since such spatial data are derived from remote sensing instruments operating from the upper layers of the atmosphere, they are frequently influenced by the presence of clouds of varying altitudes and types along the atmospheric column. As a result, it is often not possible to generate highly accurate LST values across all regions. To address this issue, numerous cloud masking techniques have been developed. The impact of cloud cover on LST calculation is investigated using Landsat 8 Level-1 data within the scope of this study. A practical cloud masking method, which can be easily implemented with the help of Geographic Information System tools, is applied to three different Landsat 8 Level-1 images from the summer season. Landsat 8 images from different years for the months of June, July, and August were utilized for the nine central districts of Ankara Province. The results show that when LST layers are used without any cloud masking, they often produce unrealistically low minimum temperature values that are inconsistent with actual surface conditions. Consequently, this leads to significant errors in the calculation of average surface temperatures across the entire spatial dataset. At the end of the study, the difference in average LST values between masked and unmasked layers is calculated as 3.63%. More striking, however, is the observed difference in minimum temperatures between masked and unmasked data, which reached up to 24 °C. Although researchers have increasingly adopted cloud filtering algorithms and masking techniques in recent years, these processes are often overlooked in spatial datasets produced on a monthly, yearly, or other periodic basis. As a result, the generated LST maps may not accurately reflect actual surface conditions. Therefore, misrepresentation may also occur in Urban Heat Island (UHI) maps, which are frequently referenced and derived from LST data. To prevent this, all provided satellite images must be subjected to cloud masking prior to analysis. CR - Artis, D. A. & Carnahan, W. H. (1982). Survey of emissivity variability in thermography of urban areas. Remote Sensing of Environment, 12(4), 313–329. https://doi.org/10.1016/0034-4257(82)90043-8 CR - Avdan, U. & Jovanovska, G. (2016). Algorithm for automated mapping of land surface temperature using Landsat 8 satellite data. Journal of Sensors, 2016, 1–8. https://doi.org/10.1155/2016/1480307 CR - Barsi, J. A., Schott, J. R., Hook, S. J., Raqueno, N. G., Markham, B. L. & Radocinski, R. G. (2014). Landsat-8 thermal infrared sensor (TIRS) vicarious radiometric calibration. Remote Sensing, 11(17), 1973. https://doi.org/10.3390/rs61111607 CR - Crawford, C. J., Roy, D. P., Arab, S., Barnes, C., Vermote, E., Hulley, G., ... Zahn, S. (2023). The 50-year Landsat collection 2 archive. Science of Remote Sensing, 8, 100103. https://doi.org/10.1016/j.srs.2023.100103 CR - Dervişoğlu, A. (2023). Investigation of the efficiency of satellite-derived LST data for mapping the meteorological parameters in Istanbul. Atmosphere, 14(4), 644. https://doi.org/10.3390/atmos14040644 CR - Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D. & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031 CR - Gutman, G., Huang, C., Chander, G., Noojipady, P. & Masek, J. G. (2013). Assessment of the NASA–USGS Global Land Survey (GLS) datasets. Remote Sensing of Environment, 134, 249–265. https://doi.org/10.1016/j.rse.2013.02.026 CR - Hubanks, P. A., Platnick, S., King, M. D. & Ridgway, B. (2019). MODIS atmosphere L3 gridded product algorithm theoretical basis document (ATBD). NASA Goddard Space Flight Center. https://atmosphere-imager.gsfc.nasa.gov/sites/default/files/ModAtmo/L3_ATBD_C6_2018_04_11.pdf CR - Jia, A., Ma, H., Liang, S. & Wang, D. (2021). Cloudy-sky land surface temperature from VIIRS and MODIS satellite data using a surface energy balance-based method. Remote Sensing of Environment, 263, 112566. https://doi.org/10.1016/j.rse.2021.112566 CR - Li, Z., Tang, B., Wu, H., Ren, H., Yan, G., Wan, Z., ... Zhou, C. (2013). Satellite-derived land surface temperature: Current status and perspectives. Remote Sensing of Environment, 131, 14–37. https://doi.org/10.1016/j.rse.2012.12.008 CR - Masson, V., Lemonsu, A., Hidalgo, J. & Voogt, J. (2020). Urban climates and climate change. Annual Review of Environment and Resources, 45, 411–444. https://doi.org/10.1146/annurev-environ-012320-083623 CR - Roy, D. P., Wulder, M. A., Loveland, T. R., Woodcock, C. E., Allen, R. G., Anderson, M. C., ... Scambos, T. A. (2014). Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment, 145, 154–172. https://doi.org/10.1016/j.rse.2014.02.001 CR - Sekertekin, A. & Bonafoni, S. (2020). Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sensing, 12(2), 294. https://doi.org/10.3390/rs12020294 CR - Skakun, S., Vermote, E. F., Santamaria Artigas, A. E., Rountree, W. H. & Roger, J.-C. (2021). An experimental sky-image-derived cloud validation dataset for Sentinel-2 and Landsat 8 satellites over NASA GSFC. International Journal of Applied Earth Observation and Geoinformation, 95, 102253. https://doi.org/10.1016/j.jag.2020.102253 CR - Wan, Z., Zhang, Y., Zhang, Q. & Li, Z.-L. (2010). Quality assessment and validation of the MODIS land surface temperature. Remote Sensing of Environment, 83(1–2), 163–180. https://doi.org/10.1080/0143116031000116417 CR - Wan, Z. (2013). Collection-6 MODIS land surface temperature products users' guide. Earth Research Institute, University of California, Santa Barbara. https://lpdaac.usgs.gov/documents/118/MOD11_User_Guide_V6.pdf CR - Wang, C., Myint, S. W., Wang, Z. & Song, J. (2016). Spatio-temporal modeling of the urban heat island in the Phoenix Metropolitan area: Land use change implications. Remote Sensing, 8(3), 185. https://doi.org/10.3390/rs8030185 CR - Weng, Q., Lu, D. & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 89(4), 467–483. https://doi.org/10.1016/j.rse.2003.11.005 CR - Yu, X., Guo, X. & Wu, Z. (2014). Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing, 6(10), 9829–9852. https://doi.org/10.3390/rs6109829 CR - Yu, W., Ma, W. & Wu, Q. (2021). Urban land surface temperature under cloud cover conditions: A temporal and spatial assessment using MODIS data. Remote Sensing, 13(11), 2183. CR - Zhu, Z. & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment, 118, 83–94. https://doi.org/10.1016/j.rse.2011.10.028 CR - Web-1, ATO. (2025, April 10). Rakamlarla Ankara. https://www.atonet.org.tr/Uploads/Birimler/Internet/Flash%20Tan%C4%B1t%C4%B1m%20Alan%C4%B1/2025_04_10_rakamlarla_ankara/2025_04_10_rakamlarla_ankara.pdf (01 Mayıs 2025 tarihinde ulaşıldı). CR - Web 2, Harita Genel Müdürlüğü. (n.d.). İl ve ilçe yüzölçümleri. https://www.harita.gov.tr/il-ve-ilce-yuzolcumleri, (01 Mayıs 2025 tarihinde ulaşıldı). CR - Web 3, Google Earth Engine. (n.d.). LANDSAT/LC08/C02/T1: Landsat 8 collection 2 tier 1. https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1?hl=tr (01 Mayıs 2025 tarihinde ulaşıldı). CR - Web 4, Overpass Turbo. (n.d.). Overpass Turbo: Web-based data filtering interface for OpenStreetMap. https://overpass-turbo.eu, (20 Nisan 2025 tarihinde ulaşıldı). UR - https://dergipark.org.tr/tr/pub/atik/issue//1696005 L1 - https://dergipark.org.tr/tr/download/article-file/4855201 ER -