TY - JOUR T1 - Elektrikli Ağır Yük Taşıma Aracı Seçiminin Çok Kriterli Analizi: Bulanık AHP-TOPSIS Çerçevesi TT - Multi-Criteria Analysis of Electric Heavy-Duty Vehicle Selection: A Fuzzy AHP-TOPSIS Framework AU - Karlı, Halil AU - Ergin, Tuğçe Ece PY - 2025 DA - October Y2 - 2025 DO - 10.51513/jitsa.1700101 JF - Akıllı Ulaşım Sistemleri ve Uygulamaları Dergisi JO - Jitsa PB - Bandırma Onyedi Eylül Üniversitesi WT - DergiPark SN - 2636-820X SP - 112 EP - 132 VL - 8 IS - 2 LA - tr AB - Uluslararası karayolu yük taşımacılığının önümüzdeki dönemde dikkate alması gereken ana zorluklardan biri ulusal ve uluslararası çevreci düzenlemelerdir. Bu düzenlemelere uyum sağlamanın yollarından biri de araç filosunu elektrikli ağır yük taşıma araçlarıyla dönüştürmektir. Ancak yüksek sermaye yatırımı isteyen bu dönüşümde doğru araç seçimi uzun dönemli etkileri olan bir karardır. Bu çalışmanın amacı, uluslararası karayolu yük taşımacılığı bağlamında elektrikli ağır yük taşıma aracı (EAYTA) seçiminde çok boyutlu karar verme sürecini sistematik bir biçimde ele alacak bütünleşmiş bir model geliştirmektir. Çalışmada bulanık AHP ve TOPSIS yöntemi bütünleşmiş bir şekilde kullanılmıştır. Kriterlerin ağırlıklarının belirlenme aşamasında Bulanık AHP yönteminden faydalanılırken alternatiflerin seçim aşamasında ise TOPSIS yönteminden faydalanılmıştır. Çalışma bulgularına göre, bulanık AHP analizi sonucunda EAYTA seçiminde etkili olan kriterler sırasıyla; yük kapasitesi, menzil, satın alma maliyeti, şarj gücü, işletme maliyeti ve motor gücüdür. TOPSIS analizi sonucu ise EAYTA sıralaması; alternatif 1, alternatif 2, alternatif 4, alternatif 5 ve alternatif 3 olarak sırlanmaktadır. Elektrikli araç seçimine yönelik yapılan çalışmalar genellikle binek araçlar veya hafif yük taşıma araçları üzerine yoğunlaşırken bu çalışma, özellikle uluslararası karayolu yük taşımacılığı bağlamında EAYTA seçim problemine yönelik bir uygulamayla hem akademik hem de endüstriyel karar süreçlerine doğrudan uygulanabilir bir model önermektedir. KW - Elektrikli kamyon KW - elektrikli tır KW - bulanık AHP KW - TOPSIS KW - yeşil lojistik KW - yeşil taşımacılık N2 - One of the main challenges that international road freight transport must consider in the coming period is national and international environmental regulations. One way to comply with these regulations is to convert the vehicle fleet to electric heavy-duty vehicles. However, this transformation, which requires significant capital investment, involves making the right vehicle selection, a decision with long-term implications. The aim of this study is to develop an integrated model that systematically addresses the multi-dimensional decision-making process in the selection of electric heavy-duty vehicles (EHDVs) within the context of international road freight transport. The study employs a combined approach using the fuzzy AHP and TOPSIS methods. The fuzzy AHP method was utilized in the stage of determining the weights of the criteria, while the TOPSIS method was employed in the stage of selecting the alternatives. According to the study findings, the criteria effective in EHDV selection, as determined by the fuzzy AHP analysis, are, in order of importance: load capacity, range, purchase cost, charging power, operating cost, and motor power. The TOPSIS analysis results the EHDV ranking as follows: alternative 1, alternative 2, alternative 4, alternative 5, and alternative 3. While studies on electric vehicle selection have generally focused on passenger vehicles or light-duty vehicles, this study proposes a model that can be directly applied to both academic and industrial decision-making processes by addressing the EHDV selection problem in the context of international road freight transport. CR - Aiello, G., Quaranta, S., Inguanta, R., Certa, A., and Venticinque, M. (2024). A multi-criteria decision-making framework for zero emission vehicle fleet renewal considering lifecycle and scenario uncertainty. Energies, 17(6), 1371. CR - Alamoodi, A. H., Albahri, O. S., Deveci, M., Albahri, A. S., Yussof, S., Dinçer, H., ... and Sharaf, I. M. (2024). Selection of electric bus models using 2-tuple linguistic T-spherical fuzzy-based decision-making model. Expert Systems with Applications, 249, 123498. https://doi.org/10.1016/j.eswa.2024.123498 CR - Alonso-Villar, A., Davíðsdóttir, B., Stefánsson, H., Ásgeirsson, E. I., and Kristjánsson, R. (2023). Electrification potential for heavy-duty vehicles in harsh climate conditions: A case study based technical feasibility assessment. Journal of Cleaner Production, 417, 137997. https://doi.org/10.1016/j.jclepro.2023.137997 CR - Behzadian, M., Otaghsara, S. K., Yazdani, M., and Ignatius, J. (2012). A state-of the-art survey of TOPSIS applications. Expert Systems with applications, 39(17), 13051-13069. https://doi.org/10.1016/j.eswa.2012.05.056 CR - Bergqvist, R., Monios, J., and Jönsson, J. (2023). Potential for rapid adoption of battery-electric heavy-duty trucks for pre-and post-haulage at intermodal terminals. Research in Transportation Business & Management, 50, 101035. https://doi.org/10.1016/j.rtbm.2023.101035 CR - Bhardwaj, S., and Mostofi, H. (2022). Technical and business aspects of battery electric trucks-a systematic review. Future Transportation, 2(2), 382-401. https://doi.org/10.3390/futuretransp2020021 CR - Biswas, T. K., and Das, M. C. (2019). Selection of commercially available electric vehicle using fuzzy AHP-MABAC. Journal of The Institution of Engineers (India): Series C, 100, 531-537. https://doi.org/10.1007/s40032-018-0481-3 CR - Biswas, T., Chatterjee, P., and Choudhuri, B. (2020). Selection of commercially available alternative passenger vehicle in automotive environment. Operational research in engineering sciences: theory and applications, 3(1), 16-27. https://doi.org/10.31181/oresta200113b CR - Bošković, S., Švadlenka, L., Jovčić, S., Dobrodolac, M., Simić, V., and Bacanin, N. (2023). An alternative ranking order method accounting for two-step normalization (AROMAN)—A case study of the electric vehicle selection problem. IEEE Access, 11, 39496-39507. 10.1109/ACCESS.2023.3265818 CR - Breed, A. K., Speth, D., and Plötz, P. (2021). CO2 fleet regulation and the future market diffusion of zero-emission trucks in Europe. Energy Policy, 159, 112640. https://doi.org/10.1016/j.enpol.2021.112640 CR - Brusselaers, N., Macharis, C., and Mommens, K. (2023). The health impact of freight transport-related air pollution on vulnerable population groups. Environmental Pollution, 329, 121555. https://doi.org/10.1016/j.envpol.2023.121555 CR - Buckley, J. J. (1985). Fuzzy hierarchical analysis. Fuzzy Sets and Systems, 17(3), 233-247. https://doi.org/10.1016/0165-0114(85)90090-9 CR - Büyükselçuk, E. Ç. (2024). Elektrikli kamyon seçiminde dairesel sezgisel bulanık kümelere dayalı VIKOR yönteminin uygulanması. İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi, 23(46), 402-427. CR - Bynum, C., Sze, C., Kearns, D., Polovick, B., and Simon, K. (2018). An examination of a voluntary policy model to effect behavioral change and influence interactions and decision making in the freight sector. Transportation Research Part D: Transport and Environment, 61, 19-32. https://doi.org/10.1016/j.trd.2016.11.018 CR - Cantillo, V., Amaya, J., Serrano, I., Cantillo-García, V., and Galván, J. (2022). Influencing factors of trucking companies willingness to shift to alternative fuel vehicles. Transportation Research Part E: Logistics and Transportation Review, 163, 102753. https://doi.org/10.1016/j.tre.2022.102753 CR - Çelikbilek, Y., and Tüysüz, F. (2020). An in-depth review of theory of the TOPSIS method: An experimental analysis. Journal of Management Analytics, 7(2), 281-300. https://doi.org/10.1080/23270012.2020.1748528 CR - Chatterjee, S., Das, P. P., and Chakraborty, S. (2024). A novel integrated multi-criteria decision-making approach for solving delivery drone selection problem. OPSEARCH, 1-30. https://doi.org/10.1007/s12597-024-00794-w CR - Cheng, X., and Lin, J. (2024). Is electric truck a viable alternative to diesel truck in long-haul operation?. Transportation Research Part D: Transport and Environment, 129, 104119. https://doi.org/10.1016/j.trd.2024.104119 CR - Cunanan, C., Tran, M. K., Lee, Y., Kwok, S., Leung, V., and Fowler, M. (2021). A review of heavy-duty vehicle powertrain technologies: Diesel engine vehicles, battery electric vehicles, and hydrogen fuel cell electric vehicles. Clean Technologies, 3(2), 474-489. https://doi.org/10.3390/cleantechnol3020028 CR - Dağdeviren, M., Yavuz, S., and Kılınç, N. (2009). Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert Systems With Applications, 36(4), 8143-8151. https://doi.org/10.1016/j.eswa.2008.10.016 CR - Das, M. C., Pandey, A., Mahato, A. K., and Singh, R. K. (2019). Comparative performance of electric vehicles using evaluation of mixed data. Opsearch, 56, 1067-1090. https://doi.org/10.1007/s12597-019-00398-9 CR - Feng, W., and Figliozzi, M. (2013). An economic and technological analysis of the key factors affecting the competitiveness of electric commercial vehicles: A case study from the USA market. Transportation Research Part C: Emerging Technologies, 26, 135-145. https://doi.org/10.1016/j.trc.2012.06.007 CR - Golui, S., Mahapatra, B. S., and Mahapatra, G. S. (2024). A new correlation-based measure on Fermatean fuzzy applied on multi-criteria decision making for electric vehicle selection. Expert Systems With Applications, 237, 121605. https://doi.org/10.1016/j.eswa.2023.121605 CR - Gomes, C. F. S., Sousa, F., Pereira, T., Oliveira, M., and Torres, L. N. M. (2023). Multicriteria methodology for selection of a personal electric vehicle. Brazilian Journal of Operations & Production Management, 20(2), 1415-1415. https://doi.org/10.14488/BJOPM.1415.2023 CR - Görçün, Ö. F., Simic, V., Kundu, P., Özbek, A., and Küçükönder, H. (2024). Electric vehicle selection for industrial users using an interval-valued intuitionistic fuzzy COPRAS-based model. Environment, Development and Sustainability, 1-42. https://doi.org/10.1007/s10668-024-05562-w CR - Gul, M., Guven, B., and Guneri, A. F. (2018). A new Fine-Kinney-based risk assessment framework using FAHP-FVIKOR incorporation. Journal of Loss Prevention in the Process Industries, 53, 3-16. https://doi.org/10.1016/j.jlp.2017.08.014 CR - Güler, A., and Polatgil, M. (2024) Investigation of the effect of expert's opinions on multi-criteria decision making techniques in electric vehicle selection. European Transport 99 (3). https://doi.org/10.48295/ET.2024.99.3 CR - Hamurcu, M., and Eren, T. (2020). Electric bus selection with multicriteria decision analysis for green transportation. Sustainability, 12(7), 2777. https://doi.org/10.3390/su12072777 CR - Hao, C., Ge, Y., Liang, J., He, Z., Huang, Z., and Dou, G. (2023). Research on promotion pathways for zero-emission medium-and heavy-duty trucks: A case study of Hainan Island. Atmosphere, 14(5), 882. https://doi.org/10.3390/atmos14050882 CR - Hensher, D. A., and Wei, E. (2024). Energy and environmental costs in transitioning to zero and low emission trucks for the Australian truck Fleet: An industry perspective. Transportation Research Part A: Policy and Practice, 185, 104108. https://doi.org/10.1016/j.tra.2024.104108 CR - Hovi, I. B., Pinchasik, D. R., Figenbaum, E., and Thorne, R. J. (2019). Experiences from battery-electric truck users in Norway. World Electric Vehicle Journal, 11(1), 5. https://doi.org/10.3390/wevj11010005 CR - International Council on Clean Transportation (ICCT). (2023). Battery electric trucks emit 63% less GHG emissions than diesel. ICCT. Erişim: 16 Aralık 2024, https://theicct.org/battery-electric-trucks-emit-63-less-ghg-emissions-than-diesel/ CR - Jahangir Samet, M., Liimatainen, H., van Vliet, O. P. R., and Pöllänen, M. (2021). Road freight transport electrification potential by using battery electric trucks in Finland and Switzerland. Energies, 14(4), 823. https://doi.org/10.3390/en14040823 CR - Kene, R., Olwal, T., and van Wyk, B. J. (2021). Sustainable electric vehicle transportation. Sustainability, 13(22), 12379. https://doi.org/10.3390/su132212379 CR - Konstantinou, T., and Gkritza, K. (2023a). Are we getting close to truck electrification? US truck fleet managers’ stated intentions to electrify their fleets. Transportation Research Part A: Policy and Practice, 173, 103697. https://doi.org/10.1016/j.tra.2023.103697 CR - Konstantinou, T., and Gkritza, K. (2023b). Examining the barriers to electric truck adoption as a system: A Grey-DEMATEL approach. Transportation Research Interdisciplinary Perspectives, 17, 100746. https://doi.org/10.1016/j.trip.2022.100746 CR - Lee, D. Y., Thomas, V. M., and Brown, M. A. (2013). Electric urban delivery trucks: Energy use, greenhouse gas emissions, and cost-effectiveness. Environmental Science & Technology, 47(14), 8022-8030. https://doi.org/10.1021/es400179w CR - Leonard, A. T., Salek, F., Azizi, A., and Resalati, S. (2022). Electrification of a class 8 heavy-duty truck considering battery pack sizing and cargo capacity. Applied Sciences, 12(19), 9683. https://doi.org/10.3390/app12199683 CR - Malozyomov, B. V., Martyushev, N. V., Sorokova, S. N., Efremenkov, E. A., Valuev, D. V., and Qi, M. (2024). Mathematical modelling of traction equipment parameters of electric cargo trucks. Mathematics, 12(4), 577. https://doi.org/10.3390/math12040577 CR - Mauler, L., Dahrendorf, L., Duffner, F., Winter, M., and Leker, J. (2022). Cost-effective technology choice in a decarbonized and diversified long-haul truck transportation sector: A US case study. Journal of Energy Storage, 46, 103891. https://doi.org/10.1016/j.est.2021.103891 CR - Mete, A. N., ve Öztaş Karlı, R. G. (2025). Elektrikli skuterlerin şehir ekosistemine katkısı: Bulanık AHP perspektifi. Iğdır Üniversitesi Sosyal Bilimler Dergisi, (38), 323-341. https://doi.org/10.54600/igdirsosbilder.1495011 CR - Moreno-Solaz, H., Artacho-Ramírez, M. Á., Aragonés-Beltrán, P., and Cloquell-Ballester, V. A. (2023). Sustainable selection of waste collection trucks considering feasible future scenarios by applying the stratified best and worst method. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e15481 CR - Moultak, M., Lutsey, N., and Hall, D. (2017). Transitioning to zero-emission heavy-duty freight vehicles. The International Council on Clean Transportation. Erişim: 15 Mayıs 2024, https://theicct.org/publication/transitioning-to-zero-emission-heavy-duty-freight-vehicles/ CR - Mu, Z., Zhao, F., Bai, F., Liu, Z., and Hao, H. (2024). Evaluating fuel cell vs. battery electric trucks: economic perspectives in alignment with China’s carbon neutrality target. Sustainability, 16(6), 2427. https://doi.org/10.3390/su16062427 CR - Noto, F., and Mostofi, H. (2023). Acceptance analysis of electric heavy trucks and battery swapping stations in the German market. Systems, 11(9), 441. https://doi.org/10.3390/systems11090441 CR - Nur, F., Alrahahleh, A., Burch, R., Babski-Reeves, K., and Marufuzzaman, M. (2020). Last mile delivery drone selection and evaluation using the interval-valued inferential fuzzy TOPSIS. Journal of Computational Design and Engineering, 7(4), 397-411. https://doi.org/10.1093/jcde/qwaa033 CR - Nykvist, B., and Olsson, O. (2021). The feasibility of heavy battery electric trucks. Joule, 5(4), 901-913. 10.1016/j.joule.2021.03.007 CR - Özlü, L., and Çelebi, D. (2024). Electrifying freight: modeling the decision-making process for battery electric truck procurement. Sustainability, 16(9), 3801. https://doi.org/10.3390/su16093801 CR - Öztaş Karlı, R. G. (2025). Çevresel sürdürülebilirlik perspektifinden şehir içi akıllı ulaşım sistemlerinin TOPSIS analizi ile değerlendirilmesi. Trafik ve Ulaşım Araştırmaları Dergisi, 8(1), 1-14. https://doi.org/10.38002/tuad.1496774 CR - Pal, K., Saraswat, D., and Budhraja, N. (2023). An ıntegrated entropy-TOPSIS approach for electric vehicle selection. Int. J. Exp. Res. Rev, 36, 311-318. https://doi.org/10.52756/ijerr.2023.v36.028 CR - Piscitelli, P., Valenzano, B., Rizzo, E., Maggiotto, G., Rivezzi, M., Esposito Corcione, F., and Miani, A. (2019). Air pollution and estimated health costs related to road transportations of goods in Italy: A first healthcare burden assessment. International Journal of Environmental Research and Public Health, 16(16), 2876. https://doi.org/10.3390/ijerph16162876 CR - Pradhan, P., Shabbiruddin, and Pradhan, S. (2022). Selection of electric vehicle using integrated Fuzzy-MCDM approach with analysis on challenges faced in hilly terrain. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(2), 2651-2673. https://doi.org/10.1080/15567036.2022.2056665 CR - Qiao, Y., and Raufer, R. (2022). Electric truck deployment in Chinese cities: Promotion policies and implications for future policymaking. Wiley Interdisciplinary Reviews: Energy and Environment, 11(4), e433. https://doi.org/10.1002/wene.433 CR - Raoofi, Z., Huge Brodin, M., and Pernestål, A. (2024). System-level impacts of electrification on the road freight transport system: a dynamic approach. International Journal of Physical Distribution & Logistics Management, 54(6), 631-651. CR - Sejwal, R., Pal, S., Kumar Singh, N., Saini, R., and Yuvraj, N. (2022). Selection of Electric Vehicles Using MCDM Techniques. In Advanced Production and Industrial Engineering (pp. 598-607). IOS Press. https://ebooks.iospress.nl/doi/10.3233/ATDE220801 CR - Sen, B., Ercan, T., and Tatari, O. (2017). Does a battery-electric truck make a difference?–Life cycle emissions, costs, and externality analysis of alternative fuel-powered Class 8 heavy-duty trucks in the United States. Journal of cleaner production, 141, 110-121. https://doi.org/10.1016/j.jclepro.2016.09.046 CR - Shekhovtsov, A., Kołodziejczyk, J., and Sałabun, W. (2020). Fuzzy model identification using monolithic and structured approaches in decision problems with partially incomplete data. Symmetry, 12(9), 1541. https://doi.org/10.3390/sym12091541 CR - Shoman, W., Yeh, S., Sprei, F., Plötz, P., and Speth, D. (2023). Battery electric long-haul trucks in Europe: Public charging, energy, and power requirements. Transportation Research Part D: Transport and Environment, 121, 103825. https://doi.org/10.1016/j.trd.2023.103825 CR - Sonar, H. C., and Kulkarni, S. D. (2021). An integrated AHP-MABAC approach for electric vehicle selection. Research in Transportation Business & Management, 41, 100665. https://doi.org/10.1016/j.rtbm.2021.100665 CR - Statista. (2023a). Global road freight emissions by vehicle type 2020. Statista. Erişim Tarihi: 16.09.2024, https://www.statista.com/statistics/1200116/road-freight-emissions-by-vehicle-type-worldwide/ CR - Statista. (2023b). Worldwide market forecast for electric trucks by type from 2020 to 2030. Statista. Erişim Tarihi: 16.06.2024, https://www.statista.com/statistics/1273791/electric-truck-worldwide-market-forecast-by-type/ CR - Tanvir, S., Un-Noor, F., Boriboonsomsin, K., and Gao, Z. (2021). Feasibility of operating a heavy-duty battery electric truck fleet for drayage applications. Transportation Research Record, 2675(1), 258-268. https://doi.org/10.1177/0361198120957325 CR - T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. (2025). Türkiye’nin Uzun Dönemli İklim Stratejisi. Erişim: 14 Mayıs 2025, https://iklim.gov.tr/db/turkce/dokumanlar/turkiyenin--8230-3143-20250210095501.pdf#page=7.86 CR - Tian, Z. P., Liang, H. M., Nie, R. X., Wang, X. K., and Wang, J. Q. (2023). Data-driven multi-criteria decision support method for electric vehicle selection. Computers & Industrial Engineering, 177, 109061. https://doi.org/10.1016/j.cie.2023.109061 CR - United Nations Environment Programme(UNEP). (2024). Rise in used heavy-duty vehicles a major contributor to pollution, prompting global action. Erişim: 16 Aralık 2024, https://www.unep.org/news-and-stories/press-release/rise-used-heavy-duty-vehicles-major-contributor-pollution-prompting CR - Vijayagopal, R., and Rousseau, A. (2021). Electric truck economic feasibility analysis. World Electric Vehicle Journal, 12(2), 75. https://doi.org/10.3390/wevj12020075 CR - Wang, N., Xu, Y., Puška, A., Stević, Ž., and Alrasheedi, A. F. (2023). Multi-Criteria selection of electric delivery vehicles using fuzzy–rough methods. Sustainability, 15(21), 15541. https://doi.org/10.3390/su152115541 CR - Wangsa, I. D., Vanany, I., and Siswanto, N. (2023). The optimal tax incentive and subsidy to promote electric trucks in Indonesia: Insight for government and industry. Case Studies on Transport Policy, 11, 100966. https://doi.org/10.1016/j.cstp.2023.100966 CR - Wątróbski, J., Małecki, K., Kijewska, K., Iwan, S., Karczmarczyk, A., and Thompson, R. G. (2017). Multi-criteria analysis of electric vans for city logistics. Sustainability, 9(8), 1453. https://doi.org/10.3390/su9081453 CR - Werner, V., and Onufrey, K. (2022). If electric trucks are the solution, what are the problems? A study of agenda-setting in demonstration projects. Energy Research & Social Science, 91, 102722. https://doi.org/10.1016/j.erss.2022.102722 CR - Więckowski, J., Wątróbski, J., Kizielewicz, B., and Sałabun, W. (2023). Complex sensitivity analysis in multi-criteria decision analysis: An application to the selection of an electric car. Journal of Cleaner Production, 390, 136051. https://doi.org/10.1016/j.jclepro.2023.136051 CR - Wu, C., Li, P., Zhou, H., and Zhou, Y. (2023). The changing adoption behaviors on electric trucks over time during the intention-purchase stage: Insights from freight enterprises’ states and perception features. Journal of Cleaner Production, 421, 138476. https://doi.org/10.1016/j.jclepro.2023.138476 CR - Xu, F., Crawford, C., Feng, Y., Lin, Z., and Li, S. (2023). Environment-economic analysis of diesel, hybrid electric, plug-in hybrid electric trucks in China. Transportation Research Part D: Transport and Environment, 117, 103661. CR - Yu, H., and Sun, X. (2024). Can an industry-led infrastructure development strategy facilitate electric truck adoption?. Transportation Research Part D: Transport and Environment, 134, 104356. https://doi.org/10.1016/j.trd.2024.104356 CR - Zhang, X., Lin, Z., Crawford, C., and Li, S. (2021). Techno-economic comparison of electrification for heavy-duty trucks in China by 2040. Transportation Research Part D: Transport and Environment, 102, 103152. https://doi.org/10.1016/j.trd.2021.103152 CR - Ziemba, P., Kannchen, M., and Borawski, M. (2024). Selection of the family electric car based on objective and subjective criteria—analysis of a case study of polish consumers. Energies, 17(6), 1347. https://doi.org/10.3390/en17061347 UR - https://doi.org/10.51513/jitsa.1700101 L1 - https://dergipark.org.tr/tr/download/article-file/4873765 ER -