TY - JOUR T1 - Gliomaların Tanısı ve Pozitron Emisyon Tomografisi (PET) İzleyicilerin (Tracer'larının) Güncel Kullanımı TT - Diagnosis of Gliomas and Current Use of Positron Emission Tomography (PET) Tracers AU - Özdem, Berna AU - Akça, Uğur AU - Tekedereli, İbrahim PY - 2025 DA - December Y2 - 2025 DO - 10.17827/aktd.1701145 JF - Arşiv Kaynak Tarama Dergisi JO - aktd PB - Çukurova Üniversitesi WT - DergiPark SN - 1300-3755 SP - 305 EP - 314 VL - 34 IS - 4 LA - tr AB - Gliomalar, merkezi sinir sisteminin en yaygın ve karmaşık tümörleri arasında yer almakta olup, tanı ve tedavi süreçlerinde önemli zorluklar sunmaktadır. Konvansiyonel görüntüleme yöntemleri, glioma biyolojisinin heterojen yapısını tam olarak yansıtmakta yetersiz kalabilmektedir. Manyetik rezonans görüntüleme (MRI) ve bilgisayarlı tomografi (CT) gibi anatomik görüntüleme teknikleri, tümör yerleşimini ve büyüklüğünü belirlemede kritik rol oynarken, fonksiyonel ve metabolik süreçleri anlamada sınırlamalar içermektedir. Pozitron emisyon tomografisi (PET), özellikle amino asit bazlı izleyicilerle glioma biyolojisinin daha hassas bir şekilde değerlendirilmesini sağlayarak, tanı doğruluğunu artırmaktadır. Geleneksel FDG-PET ’in normal beyin dokusundaki yüksek glukoz metabolizması nedeniyle sınırlı kontrast sunması, gliomaların tespiti ve takibinde alternatif izleyicilerin geliştirilmesini teşvik etmiştir. Bu bağlamda, ¹¹C-MET, ¹⁸F-FET ve ¹⁸F-DOPA gibi sistem L amino asit taşıyıcılarını hedefleyen izleyiciler ile sistem A amino asit taşıyıcı bazlı ajanlar, tümör-beyin kontrast oranlarını artırarak tanı ve tedavi süreçlerine önemli katkılar sağlamaktadır. Bu derleme, gliomaların tanı ve tedavisinde mevcut zorlukları ele almakta ve PET izleyicilerinin klinik kullanımına yönelik güncel gelişmeleri kapsamlı bir şekilde değerlendirmektedir. Gelecekte, moleküler ve genetik biyobelirteçlerle entegre edilen bu tekniklerin, glioma yönetiminde kişiselleştirilmiş ve daha etkili stratejilerin geliştirilmesine olanak sağlayacağı öngörülmektedir. KW - Amino Asit Bazlı Tracer KW - FDG-PET KW - Glioma KW - PET KW - Psödoprogresyon N2 - Gliomas are among the most common and complex tumors of the central nervous system, presenting significant challenges in diagnosis and treatment. Conventional imaging modalities often fail to fully capture the heterogeneous nature of glioma biology. Anatomical imaging techniques such as magnetic resonance imaging (MRI) and computed tomography (CT) play a crucial role in determining tumor location and size but have limitations in assessing functional and metabolic processes. Positron emission tomography (PET), particularly with amino acid-based tracers, enables a more precise evaluation of glioma biology, improving diagnostic accuracy. Traditional FDG-PET is limited by the high glucose metabolism of normal brain tissue, which has led to the development of alternative tracers for glioma detection and monitoring. In this context, tracers targeting system L amino acid transporters such as ¹¹C-MET, ¹⁸F-FET and ¹⁸F-DOPA, along with system A amino acid transporter-based agents, provide significant contributions to diagnostic and therapeutic processes by enhancing tumor-to-brain contrast ratios. This review addresses the current challenges in glioma diagnosis and treatment while providing a comprehensive evaluation of the latest advancements in PET tracer applications. In the future, integrating these imaging techniques with molecular and genetic biomarkers is expected to facilitate the development of personalized and more effective strategies for glioma management. CR - 1. Alther B, Mylius V, Weller M, Gantenbein A. From first symptoms to diagnosis: Initial clinical presentation of primary brain tumors. Clinical and Translational Neuroscience. 2020;4(2):2514183X20968368. CR - 2. Ostrom QT, Gittleman H, Liao P, Vecchione-Koval T, Wolinsky Y, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2010–2014. Neuro-oncology. 2017;19(suppl_5):v1-v88. CR - 3. Riemenschneider MJ, Reifenberger G. Molecular neuropathology of gliomas. International journal of molecular sciences. 2009;10(1):184-212. CR - 4. Von Bernhardi R, Eugenín-von Bernhardi J, Flores B, Eugenín León J. Glial Cells and Integrity of the Nervous System. Adv Exp Med Biol. 2016;949:1-24. CR - 5. Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee Sh U. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac J Cancer Prev. 2017;18(1):3-9. CR - 6. Kanderi T, Munakomi S, Gupta V. Glioblastoma multiforme. StatPearls [Internet]: StatPearls Publishing; 2024. CR - 7. Gunasegaran B, Ashley CL, Marsh-Wakefield F, Guillemin GJ, Heng B. Viruses in glioblastoma: an update on evidence and clinical trials. BJC Reports. 2024;2(1):33. CR - 8. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, et al. The epidemiology of glioma in adults: a “state of the science” review. Neuro-oncology. 2014;16(7):896-913. CR - 9. AmerikanKanserEnstitüsü. Brain and Other Nervous System Cancer - Cancer Stat Facts: National Cancer Institute; 2024 [Available from: https://seer.cancer.gov/statfacts/html/brain.html.Access Date: 20 January 2025 CR - 10. SağlıkBakanlığı TC. Türkiye Kanser İstatistikleri 2018 Raporu 2018 [Available from: https://hsgm.saglik.gov.tr/depo/birimler/kanser-db/Dokumanlar/Istatistikler/Kanser_Rapor_2018.pdf.Access Date: 20.02.2025 CR - 11. Lerner A, Palmer K, Campion T, Millner TO, Scott E, Lorimer C, et al. Gliomas in adults: Guidance on investigations, diagnosis, treatment and surveillance. Clin Med (Lond). 2024;24(5):100240. CR - 12. Bajin IY, Bouffet E. Optic pathway and hypothalamic glioma, old problems, new paradigms. Pediatric Hematology Oncology Journal. 2023;8(2):102-10. CR - 13. Leece R, Xu J, Ostrom QT, Chen Y, Kruchko C, Barnholtz-Sloan JS. Global incidence of malignant brain and other central nervous system tumors by histology, 2003-2007. Neuro Oncol. 2017;19(11):1553-64. CR - 14. Gladson CL, Prayson RA, Liu WM. The pathobiology of glioma tumors. Annu Rev Pathol. 2010;5:33-50. CR - 15. Fernández IS, Loddenkemper T. Seizures caused by brain tumors in children. Seizure. 2017;44:98-107. CR - 16. Guo X, Gu L, Li Y, Zheng Z, Chen W, Wang Y, et al. Histological and molecular glioblastoma, IDH-wildtype: a real-world landscape using the 2021 WHO classification of central nervous system tumors. Front Oncol. 2023;13:1200815. CR - 17. Han S, Liu Y, Cai SJ, Qian M, Ding J, Larion M, et al. IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. British journal of cancer. 2020;122(11):1580-9. CR - 18. Brandner S, McAleenan A, Kelly C, Spiga F, Cheng HY, Dawson S, et al. MGMT promoter methylation testing to predict overall survival in people with glioblastoma treated with temozolomide: a comprehensive meta-analysis based on a Cochrane Systematic Review. Neuro Oncol. 2021;23(9):1457-69. CR - 19. Cahill DP, Louis DN, Cairncross JG. Molecular background of oligodendroglioma: 1p/19q, IDH, TERT, CIC and FUBP1. CNS Oncol. 2015;4(5):287-94. CR - 20. Hooper GW, Ansari S, Johnson JM, Ginat DT. Advances in the Radiological Evaluation of and Theranostics for Glioblastoma. Cancers. 2023;15(16):4162. CR - 21. Florkow MC, Willemsen K, Mascarenhas VV, Oei EH, van Stralen M, Seevinck PR. Magnetic resonance imaging versus computed tomography for three‐dimensional bone imaging of musculoskeletal pathologies: a review. Journal of Magnetic Resonance Imaging. 2022;56(1):11-34. CR - 22. Heye AK, Culling RD, Hernández MdCV, Thrippleton MJ, Wardlaw JM. Assessment of blood–brain barrier disruption using dynamic contrast-enhanced MRI. A systematic review. NeuroImage: Clinical. 2014;6:262-74. CR - 23. Alksas A, Shehata M, Atef H, Sherif F, Alghamdi NS, Ghazal M, et al. A novel system for precise grading of glioma. Bioengineering. 2022;9(10):532. CR - 24. Kickingereder P, Sahm F, Radbruch A, Wick W, Heiland S, Deimling Av, et al. IDH mutation status is associated with a distinct hypoxia/angiogenesis transcriptome signature which is non-invasively predictable with rCBV imaging in human glioma. Scientific reports. 2015;5(1):16238. CR - 25. Shi Y, Liu D, Kong Z, Liu Q, Xing H, Wang Y, et al. Prognostic Value of Choline and Other Metabolites Measured Using 1H-Magnetic Resonance Spectroscopy in Gliomas: A Meta-Analysis and Systemic Review. Metabolites. 2022;12(12):1219. CR - 26. Karmakar DK, Badhe PV, Mhatre P, Shrivastava S, Sultan M, Shankar G, et al. Utility of Diffusion Tensor Imaging in Assessing Corticospinal Tracts for the Management of Brain Tumors: A Cross-Sectional Observational Study. Cureus. 2023;15(10). CR - 27. Lakhani DA, Sabsevitz DS, Chaichana KL, Quiñones-Hinojosa A, Middlebrooks EH. Current state of functional MRI in the presurgical planning of brain tumors. Radiology: Imaging Cancer. 2023;5(6):e230078. CR - 28. Kotecha R, Odia Y, Khosla AA, Ahluwalia MS. Key clinical principles in the management of glioblastoma. JCO oncology practice. 2023;19(4):180-9. CR - 29. Knudsen‐Baas K, Moen G, Fluge Ø, Storstein A. Pseudoprogression in high‐grade glioma. Acta neurologica scandinavica. 2013;127:31-7. CR - 30. Yang X, Ren H, Fu J. Treatment of radiation‐induced brain necrosis. Oxidative Medicine and Cellular Longevity. 2021;2021(1):4793517. CR - 31. Vaquero JJ, Kinahan P. Positron emission tomography: current challenges and opportunities for technological advances in clinical and preclinical imaging systems. Annual review of biomedical engineering. 2015;17(1):385-414. CR - 32. Nolte T, Gross-Weege N, Schulz V. (Hybrid) SPECT and PET technologies. Molecular Imaging in Oncology. 2020:111-33. CR - 33. Rohren EM, Turkington TG, Coleman RE. Clinical applications of PET in oncology. Radiology. 2004;231(2):305-32. CR - 34. Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-oncology. 2016;18(9):1199-208. CR - 35. Long NM, Smith CS. Causes and imaging features of false positives and false negatives on 18F-PET/CT in oncologic imaging. Insights into imaging. 2011;2(6):679-98. CR - 36. Tan H, Chen L, Guan Y, Lin X. Comparison of MRI, F-18 FDG, and 11C-choline PET/CT for their potentials in differentiating brain tumor recurrence from brain tumor necrosis following radiotherapy. Clinical nuclear medicine. 2011;36(11):978-81. CR - 37. Pijl JP, Nienhuis PH, Kwee TC, Glaudemans AW, Slart RH, Gormsen LC, editors. Limitations and pitfalls of FDG-PET/CT in infection and inflammation. Seminars in nuclear medicine; 2021: Elsevier. CR - 38. GÜLBAHAR ATEŞ S, AKDEMİR Ü, editors. PET/MR Imaging in Neurooncology Nöroonkolojide PET/MR Görüntüleme. Nuclear Medicine Seminars; 2024. CR - 39. Strickland M, Stoll EA. Metabolic reprogramming in glioma. Frontiers in cell and developmental biology. 2017;5:43. CR - 40. Saito Y, Soga T. Amino acid transporters as emerging therapeutic targets in cancer. Cancer science. 2021;112(8):2958-65. CR - 41. Sidoryk M, Matyja E, Dybel A, Zielinska M, Bogucki J, Jaskólski DJ, et al. Increased expression of a glutamine transporter SNAT3 is a marker of malignant gliomas. Neuroreport. 2004;15(4):575-8. CR - 42. Haining Z, Kawai N, Miyake K, Okada M, Okubo S, Zhang X, et al. Relation of LAT1/4F2hc expression with pathological grade, proliferation and angiogenesis in human gliomas. BMC clinical pathology. 2012;12(1):4. CR - 43. Wang Q, Holst J. L-type amino acid transport and cancer: targeting the mTORC1 pathway to inhibit neoplasia. American journal of cancer research. 2015;5(4):1281. CR - 44. Cormerais Y, Giuliano S, LeFloch R, Front B, Durivault J, Tambutté E, et al. Genetic disruption of the multifunctional CD98/LAT1 complex demonstrates the key role of essential amino acid transport in the control of mTORC1 and tumor growth. Cancer research. 2016;76(15):4481-92. CR - 45. Franchi‐Gazzola R, Dall'Asta V, Sala R, Visigalli R, Bevilacqua E, Gaccioli F, et al. The role of the neutral amino acid transporter SNAT2 in cell volume regulation. Acta physiologica. 2006;187(1‐2):273-83. CR - 46. Sutinen E, Jyrkkiö S, Grönroos T, Haaparanta M, Lehikoinen P, Någren K. Biodistribution of [11 C] methylaminoisobutyric acid, a tracer for PET studies on system A amino acid transport in vivo. European journal of nuclear medicine. 2001;28:847-54. CR - 47. Evangelista L, Cuppari L, Bellu L, Bertin D, Caccese M, Reccia P, et al. Comparison between 18f-Dopa and 18f-Fet pet/Ct in patients with suspicious recurrent high grade glioma: a literature review and our experience. Current Radiopharmaceuticals. 2019;12(3):220-8. CR - 48. Xu W, Gao L, Shao A, Zheng J, Zhang J. The performance of 11C-Methionine PET in the differential diagnosis of glioma recurrence. Oncotarget. 2017;8(53):91030. CR - 49. Kratochwil C, Combs SE, Leotta K, Afshar-Oromieh A, Rieken S, Debus J, et al. Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors. Neuro-oncology. 2014;16(3):434-40. CR - 50. Saarinen I, Jambor I, Kim M, Kuisma A, Kemppainen J, Merisaari H, et al. Correlation between 18 F-1-amino-3-fluorocyclobutane-1-carboxylic acid (18 F-fluciclovine) uptake and expression of alanine-serine-cysteine-transporter 2 (ASCT2) and L-type amino acid transporter 1 (LAT1) in primary prostate cancer. EJNMMI research. 2019;9:1-11. CR - 51. Parent EE, Patel D, Nye JA, Li Z, Olson JJ, Schuster DM, et al. [18F]-Fluciclovine PET discrimination of recurrent intracranial metastatic disease from radiation necrosis. EJNMMI research. 2020;10(1):148. CR - 52. Johannessen K, Berntsen EM, Johansen H, Solheim TS, Karlberg A, Eikenes L. 18F-FACBC PET/MRI in the evaluation of human brain metastases: a case report. European Journal of Hybrid Imaging. 2021;5(1):7. CR - 53. Scarpelli ML, Healey DR, Mehta S, Quarles CC. Imaging glioblastoma with 18F-fluciclovine amino acid positron emission tomography. Frontiers in oncology. 2022;12:829050. CR - 54. Halle B, Thisgaard H, Hvidsten S, Dam JH, Aaberg-Jessen C, Thykjær AS, et al. Estimation of tumor volumes by 11C-MeAIB and 18F-FDG PET in an orthotopic glioblastoma rat model. Journal of Nuclear Medicine. 2015;56(10):1562-8. CR - 55. An S, Lu X, Zhao W, Sun T, Zhang Y, Lu Y, et al. Amino acid metabolism abnormity and microenvironment variation mediated targeting and controlled glioma chemotherapy. Small. 2016;12(40):5633-45. CR - 56. Suzuki M. Boron neutron capture therapy (BNCT): A unique role in radiotherapy with a view to entering the accelerator-based BNCT era. International journal of clinical oncology. 2020;25(1):43-50. CR - 57. Martucci M, Russo R, Schimperna F, D'Apolito G, Panfili M, Grimaldi A, et al. Magnetic Resonance Imaging of Primary Adult Brain Tumors: State of the Art and Future Perspectives. Biomedicines. 2023;11(2). CR - 58. Dormagen JB, Verma N, Fink KR, editors. Imaging in oncologic emergencies. Seminars in Roentgenology; 2020: Elsevier. CR - 59. Rogers BP, Morgan VL, Newton AT, Gore JC. Assessing functional connectivity in the human brain by fMRI. Magnetic resonance imaging. 2007;25(10):1347-57. CR - 60. Assaf Y, Pasternak O. Diffusion tensor imaging (DTI)-based white matter mapping in brain research: a review. Journal of molecular neuroscience. 2008;34:51-61. CR - 61. Galldiks N, Lohmann P, Friedrich M, Werner J-M, Stetter I, Wollring MM, et al. PET imaging of gliomas: Status quo and quo vadis? Neuro-oncology. 2024;26(Supplement_9):S185-S98. UR - https://doi.org/10.17827/aktd.1701145 L1 - https://dergipark.org.tr/tr/download/article-file/4878313 ER -