TY - JOUR T1 - İNSAN DENTAL VARYASYONUNDA EVRİMSEL SÜREÇLER: NÖTRALİZM VE ADAPTASYONUN ROLÜ TT - EVOLUTIONARY PROCESSES IN HUMAN DENTAL VARIATION: THE ROLE OF NEUTRALISM AND ADAPTATION AU - Erbil, Fatma Nur PY - 2025 DA - July Y2 - 2025 JF - Ankara Üniversitesi Sosyal Bilimler Dergisi JO - AUSOBILD PB - Ankara Üniversitesi WT - DergiPark SN - 2148-3434 SP - 272 EP - 281 VL - 16 IS - 2 LA - tr AB - Popülasyonlar arasındaki biyolojik ilişkileri ve göç hareketlerini belirlemek için dişin morfolojik özelliklerini kullanan antropolojik çalışmalar, bu özelliklerin nötral evrimsel süreçlerle oluştuğu varsayımıyla yola çıkmaktadır. Nötral evrim yaklaşımına göre, gözlemlenen varyasyonlar, genetik sürüklenme ve kurucu etkisi gibi şansa bağlı olaylar tarafından şekillenmiştir. Nötral yaklaşımın zıttı olarak kabul edilen adaptif yaklaşıma göre ise, diş özellikleri doğal seçilim baskısı sebebiyle çevre şartlarına uyarlanmış adaptif özelliklerdir. Adaptif yaklaşım, diş özelliklerinin tesadüfi olarak oluşmadıklarını, bireye fonksiyonel avantaj sağladıkları için pozitif seçilime uğradıklarını ileri sürmektedir. İnsan dişinde gözlenen morfolojik varyasyonun çevresel baskılarla mı yoksa nötral bir şekilde mi evrimleştiğinin aydınlatılması önem arz etmektedir. Bu varyasyonun nötral olmadığı ve çevresel baskılarla şekillendiği varsayımı doğru ise, bu çalışmalar popülasyonlar arasındaki genetik ilişkiler yerine diyet ve iklim gibi etkileri yansıtacağından yanıltıcı sonuçlar verebilir. Bunun sonucu olarak, antropolojide geleneksel olarak kullanılan diş özelliklerinin biyolojik ilişkileri belirmede güvenilirliği tehlikeye girecektir. Bu makalede, adaptif ve nötral evrim yaklaşımları ile ilgili literatür diş özellikleri bağlamında değerlendirilmiştir. KW - Metrik olmayan diş özellikleri KW - Nötral evrim KW - Biyolojik uzaklık KW - Adaptasyon KW - Doğal seçilim N2 - Anthropological studies that use dental morphological traits to determine biological relationships and population movements rely on the assumption that these traits are formed by neutral evolutionary processes. According to the neutral evolutionary approach, observed variations are shaped by random events such as genetic drift and founder effects. In contrast to the neutral approach, the adaptive approach assumes that dental traits are traits adapted to environmental conditions due to natural selection pressure. The adaptive approach argues that dental traits do not occur by chance, but are subject to positive selection because they confer a functional advantage to the individual. It is important to clarify whether the morphological variation observed in human teeth is due to environmental pressures or whether it evolved neutrally. If the assumption that this variation is not neutral and is shaped by environmental pressures is correct, these studies may yield misleading results by reflecting influences such as diet and climate rather than genetic relationships between populations. Consequently, the reliability of dental traits traditionally used in anthropology to determine biological relationships would be compromised. In this article, the literature on adaptive and neutral evolutionary approaches in the context of dental traits is reviewed. CR - Bailey, S. E. (2006). The evolution of non-metric dental variation in Europe. Mitteilungen der Gesellschaft für Urgeschichte, 15, 9-30. CR - Blankenship-Sefczek, E. C. (2019). Expression of two near absent dental traits, mesial cuspule and paraconid, on one Archaic period modern human from the Ohio Valley: Rare molar traits in the Ohio Valley. Dental Anthropology Journal, 32(1), 3-7. https://doi.org/10.26575/daj.v32i1.16 CR - Bush W. S., ve Moore J. H. (2012). Chapter 11: Genome-Wide Association Studies. PLoS Computational Biology, 8(12), e1002822. https://doi.org/10.1371/journal.pcbi.1002822 CR - Constantino, P. J., Bush, M. B., Barani, A. ve Lawn, B. R., (2016). On the evolutionary advantage of multi-cusped teeth. Journal of The Royal Society Interface, 13, 20160374. https://doi.org/10.1098/rsif.2016.0374 CR - Dahlberg, A. A., (1963). Dental evolution and culture. Human Biology, 35(3), 237-249. https://www.jstor.org/stable/41448607 CR - Dobzhansky, T., (1956). What is an adaptive trait?. The American Naturalist, 90(855), 337-347. https://www.jstor.org/stable/2458484 CR - Hanihara, T., (2008). Morphological variation of major human populations based on nonmetric dental traits. American Journal of Physical Anthropology, 136(2), 169-182. https://doi.org/10.1002/ajpa.20792 CR - Hlusko, L. J., Carlson, J. P., Chaplin, G., Elias, S. A., Hoffecker, J. F., Huffman, M., Jablonski, N. G., Monson, T. A., O’Rourke, D. H., Pilloud, M. A., ve Scott, G. R. (2018). Environmental selection during the last ice age on the mother-to-infant transmission of vitamin D and fatty acids through breast milk. Proceedings of the National Academy of Sciences, 115(19), E4426-E4432. https://doi.org/10.1073/pnas.1711788115 CR - Holderegger, R., Kamm, U. ve Gugerli, F., (2006). Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landscape Ecology, 21, 797-807. https://doi.org/10.1007/s10980-005-5245-9 CR - Hubbard, A. R., Guatelli‐Steinberg, D. ve Irish, J. D., (2015). Do nuclear DNA and dental nonmetric data produce similar reconstructions of regional population history? An example from modern coastal Kenya. American Journal of Physical Anthropology, 157(2), 295-304. https://doi.org/10.1002/ajpa.22714 CR - Irish, J. D., Morez, A., Flink, L. G., Phillips, E. L. W., ve Scott, G. R. (2020). Do dental nonmetric traits actually work as proxies for neutral genomic data? Some answers from continental-and global-level analyses. American Journal of Physical Anthropology, 172(3), 347-375. https://doi.org/10.1002/ajpa.24052 CR - Jernvall, J., Keränen, S. V. E., ve Thesleff, I. (2000). Evolutionary modification of development in mammalian teeth: Quantifying gene expression patterns and topography. Proceedings of the National Academy of Sciences, 97(26), 14444-14448. https://doi.org/10.1073/pnas.97.26.14444 CR - Kamberov, Y. G., Wang, S., Tan, J., Gerbault, P., Wark, A., Tan, L., Yang, Y., Li, S., Tang, K., Chen, H., ve Powell, A. (2013). Modeling recent human evolution in mice by expression of a selected EDAR variant. Cell, 152(4), 691-702. https://doi.org/10.1016/j.cell.2013.01.016 CR - Kimura, M., (1968). Evolutionary rate at the molecular level. Nature, 217, 624-626. https://doi.org/10.1038/217624a0 CR - Kimura, M., (1991). Recent development of the neutral theory viewed from the Wrightian tradition of theoretical population genetics. Proceedings of the National Academy of Sciences, 88(14), 5969-5973. https://doi.org/10.1073/pnas.88.14.5969 CR - Kimura, R., Yamaguchi, T., Takeda, M., Kondo, O., Toma, T., Haneji, K., Hanihara, T., Matsukusa, H., Kawamura, S., Maki, K. and Osawa, M., Ishida, H., ve Oota, H. (2009). A Common Variation in EDAR Is a Genetic Determinant of Shovel-Shaped Incisors. The American Journal of Human Genetics, 85:528–535. https://doi.org/10.1016/j.ajhg.2009.09.006 CR - Koussoulakou, D. S., Margaritis, L. H. ve Koussoulakos, S. L., (2009). A Curriculum Vitae of Teeth: Evolution, Generation, Regeneration. International Journal of Biological Sciences, 5(3), 226-243. https://doi.org/10.7150/ijbs.5.226 CR - Marado, L. M. ve Campanacho, V., (2013). Carabelli’s trait: Definition and review of a commonly used dental non-metric variable. Cadernos do GEEvH, 2(1), 24-39. https://doi.org/10316/23910 CR - Mayr, E. (1983). How to carry out the adaptationist program?. The American Naturalist, 121(3), 324-334. https://www.jstor.org/stable/2461153 CR - Mizoguchi, Y. (1985). Shovelling: A statistical analysis of its morphology. Tokyo: University of Tokyo Press. CR - Mizoguchi, Y., (1993). Adaptive significance of the Carabelli trait. Bulletin of the National Science Museum, Series D (Anthropology), 19, 21-58. CR - Mizoguchi, Y., (2013). Significant among-population associations found between dental characters and environmental factors. G. R. Scott ve J. D. Irish (Ed.) içinde, Anthropological Perspectives on Tooth Morphology: Genetics, Evolution, Variation (s. 108-125). Cambridge: Cambridge University Press. CR - Monson, T. A., Fecker, D. ve Scherrer, M., (2020). Neutral evolution of human enamel–dentine junction morphology. Proceedings of the National Academy of Sciences, https://doi.org/10.1073/pnas.2008037117 CR - Mustonen, T., Pispa, J., Mikkola, M. L., Pummila, M., Kangas, A. T., Pakkasjärvi, L., Jaatinen, R., ve Thesleff, I. (2003). Stimulation of ectodermal organ development by Ectodysplasin-A1. Developmental Biology, 259(1), 123-136. https://doi.org/10.1016/S0012-1606(03)00157-X CR - Nieminen P, Arte S, Tanner D, Paulin L, Alaluusua S, Thesleff I, Pirinen S. (2001). Identification of a nonsense mutation in the PAX9 gene in molar oligodontia. European Journal of Human Genetics, 9(10):743-6. https://doi.org/10.1038/sj.ejhg.5200715. PMID: 11781684. CR - Park, J. H., Yamaguchi, T., Watanabe, C., Kawaguchi, A., Haneji, K., Takeda, M., Kim, Y. I., Tomoyasu, Y., Watanabe, M., Oota, H., Hanihara, T., Ishida, H., Maki, K., Park, S. B., ve Kimura, R. (2012). Effects of an Asian-specific nonsynonymous EDAR variant on multiple dental traits. Journal of Human Genetics, 57, 508-514. https://doi.org/10.1038/jhg.2012.60 CR - Pereira, T. V., Salzano, F. M., Mostowska, A., Trzeciak, W. H., Ruiz-Linares, A., Chies, J. A. B., Saavedra, C., Nagamachi, C., Hurtado, A. M., Hill, K. and Castro-de-Guerra, D., Silva-Júnior, W. A., ve Bortolini, M. (2006). Natural selection and molecular evolution in primate PAX9 gene, a major determinant of tooth development. Proceedings of the National Academy of Sciences, 103(15), 5676-5681. https://doi.org/10.1073/pnas.0509562103 CR - Peters H, Neubüser A, Kratochwil K, Balling R. (1998). Pax9-deficient mice lack pharyngeal pouch derivatives and teeth and exhibit craniofacial and limb abnormalities. Genes & Development, 12(17):2735-47. https://doi.org/10.1101/gad.12.17.2735 CR - Rathmann, H. ve Reyes-Centeno, H., (2020). Testing the utility of dental morphological trait combinations for inferring human neutral genetic variation. Proceedings of the National Academy of Sciences, 117(20), 10769-10777. https://doi.org/10.1073/pnas.1914330117 CR - Rathmann, H., Reyes-Centeno, H., Ghirotto, S., Creanza, N., Hanihara, T. ve Harvati, K., (2017). Reconstructing human population history from dental phenotypes. Scientific Reports, 7(1), 1-9. https://doi.org/10.1038/s41598-017-12621-y CR - Scott, G. R., Schmitz, K., Heim, K. N., Paul, K. S., Schomberg, R., ve Pilloud, M. A. (2018a). Sinodonty, Sundadonty, and the Beringian Standstill model: Issues of timing and migrations into the New World. Quaternary International, 466, 233– 246. https://doi.org/10.1016/j.quaint.2016.04.027 CR - Scott, G. R., Turner II, C. G., Townsend, G. C., ve Martinón-Torres, M. (2018b). The Anthropology of Modern Human Teeth: Dental Morphology and its Variation in Recent and Fossil Homo sapiens. (2nd ed.). Cambridge University Press. CR - Tucker, A. S., Headon, D. J., Schneider, P., Ferguson, B. M., Overbeek, P., Tschopp, J., ve Sharpe, P. T. (2000). Edar/Eda interactions regulate enamel knot formation in tooth morphogenesis. Development, 127(21), 4691-4700. https://doi.org/10.1242/dev.127.21.4691 CR - Tucker, A. S., Headon, D. J., Courtney, J. M., Overbeek, P. ve Sharpe, P. T., (2004). The activation level of the TNF family receptor, Edar, determines cusp number and tooth number during tooth development. Developmental Biology, 268(1), 185-194. https://doi.org/10.1016/j.ydbio.2003.12.019 CR - Turner II, C. G., Nichol, C. R., ve Scott, G. R. (1991). Scoring procedures for key morphological traits of the permanent dentition: The Arizona State University Dental Anthropology system. Advances in Dental Anthropology, 13-31. UR - https://dergipark.org.tr/tr/pub/sobild/issue//1707267 L1 - https://dergipark.org.tr/tr/download/article-file/4906016 ER -