TY - JOUR T1 - Potential Efficiency of Aspergillus chevalieri Against Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) Larvae: Conidial Suspension and Ethanol Extract TT - Aspergillus chevalieri'nin Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) Larvalarına Karşı Potansiyel Etkinliği: Konidial Süspansiyon ve Etanol Ekstraktı AU - Güner, Pınar AU - Aşkun, Tülin AU - Er, Aylin AU - Deniz Sönmez, Görkem AU - Korkmaz, Raziye PY - 2025 DA - September Y2 - 2025 DO - 10.31594/commagene.1709718 JF - Commagene Journal of Biology JO - Comm. J. Biol. PB - ABADER (Adıyaman Bilimsel Araştırmalar Derneği) WT - DergiPark SN - 2602-456X SP - 198 EP - 209 VL - 9 IS - 2 LA - en AB - In recent years, there has been a notable increase in research data supporting the use of fungal species from diverse genera such as Penicillium, Aspergillus, Fusarium, Beauveria, Cordyceps, Metarhizium, and Purpureocillium in biological control applications. The current study was conducted to identify Aspergillus chevalieri using morphological characteristics and molecular data, then to determine the potential efficiency of conidial suspension and ethanol extract against Ephestia kuehniella and to investigate its mycotoxin production potential and cytotoxicity. The identification was carried out using phenotypic characteristics and sequences of the internal transcribed spacer (ITS), beta-tubulin gene (benA), and RNA polymerase II second largest subunit (RPB2) loci. In developmental biology studies, it was determined that topically applied conidial suspensions and ethanol extracts at varying concentrations affected different life stages of the insect. In the conidial suspension treatments, the larval period (at 10⁸ conidia/mL) and pupal period (at 10⁶, 10⁷, and 10⁸ conidia/mL) were notably shortened compared to the control group. In ethanol extract applications, the adult emergence time was reduced at the lowest concentrations (0.5 mg/mL and 1 mg/mL). Furthermore, both conidial suspensions and ethanol extracts caused a significant decrease in the total number of eggs, depending on the concentration applied. In the cytotoxicity test, the ethanol extract of the fungus was found to be cytotoxic in the L929 mouse cell line (NCTC clone 929) at concentrations above 0.78 mg/mL. This study showed that the fungus does not produce aflatoxin and ochratoxin and provided the first information on its potential efficiency against E. kuehniella larvae. Based on the present findings, A. chevalieri can be considered a promising candidate for inclusion in biological control programs. To fully assess its potential, future studies should explore its efficacy against a broader range of pest species and conduct field trials under diverse environmental conditions to validate the laboratory results. KW - Fungal identification KW - fungal pathogenicity KW - developmental biology KW - biological control KW - sustainable agriculture N2 - Son yıllarda, Penicillium, Aspergillus, Fusarium, Beauveria, Cordyceps, Metarhizium ve Purpureocillium gibi çeşitli cinslere ait mantar türlerinin biyolojik mücadelede kullanılmasına yönelik araştırma verilerinde dikkate değer bir artış yaşanmıştır. Bu çalışma, Aspergillus chevalieri'nin morfolojik özellikleri ve moleküler veriler kullanılarak tanımlanması, ardından konidiyum süspansiyonu ve etanol ekstraktının Ephestia kuehniella'ya karşı potansiyel etkinliğinin belirlenmesi ve ayrıca mikotoksin üretim potansiyeli ile sitotoksisitesinin araştırılması amacıyla gerçekleştirilmiştir. Tanımlamada; fenotipik özelliklere ek olarak iç transkribe edilen aralık (ITS), beta-tübülin (benA) ve RNA polimeraz II'nin ikinci büyük alt birimi (RPB2) gen bölgelerinin dizileri kullanılmıştır. Gelişim biyolojisi çalışmalarında, topikal olarak uygulanan farklı dozlardaki konidiyal süspansiyonların ve etanol ekstraktlarının böceğin farklı gelişim evrelerinde etkili olduğu belirlendi. Konidiyal süspansiyon uygulamalarında özellikle kontrole göre larval periyodun (108 konidia/mL) ve pupal periyodun (106, 107, 108 konidia/mL) kısaldığı görülürken, etanol ekstresi uygulamalarında ise en düşük dozlarda ergin çıkış süresinin (0.5 mg/mL ve 1 mg/mL) kısaldığı görülmüştür. Ayrıca, hem konidial süspansiyonların hem de etanol ekstraktının konsantrasyonuna bağlı olarak kontrole göre yumurta sayısında önemli azalmalar görülmüştür. Sitotoksisite testinde ise fungusun etanol ekstraktı, 0.78 mg/mL üzerindeki konsantrasyonlarda L929 fare hücre hattı (NCTC clone 929) üzerinde sitotoksik etki göstermiştir. Çalışma ayrıca, bu mantarın aflatoksin ve okratoksin üretmediğini ortaya koymuş ve E. kuehniella larvalarına karşı potansiyel etkinliği konusunda ilk bilgileri sunmuştur. Elde edilen bulgulara dayanarak, A. chevalieri biyolojik mücadele programlarına dahil edilebilecek umut verici bir aday olarak değerlendirilebilir. Bu potansiyelin tam olarak anlaşılabilmesi için, gelecekte yapılacak araştırmalarda A. chevalieri’nin farklı zararlı türleri üzerindeki etkisinin değerlendirilmesi ve çeşitli çevresel koşullarda saha denemelerinin gerçekleştirilmesi gerekmektedir. CR - Alikhani, M., Safavi, S.A., & Iranipou, S. (2019). Effect of the entomopathogenic fungus, Metarhizium anisopliae (Metschnikoff) Sorokin, on demographic fitness of the tomato leaf miner, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Egyptian Journal of Biological Pest Control, 29, 1-7. https://doi.org/10.1186/s41938-019-0121 CR - Bovio, E., Garzoli, L., Poli, A., Luganini, A., Villa, P., Musumeci, R., McCormack, G.P., Cocuzza, C.E., Gribaudo, G., Mehiri, M., & Varese, G.C. (2019). Marine fungi from the sponge Grantia compressa: biodiversity, chemodiversity, and biotechnological potential. Marine drugs, 17(4), 220. https://doi.org/10.3390/md17040220 CR - Castillo, M.A., Moya, P., Hernández, E., & Primo-Yufera, E. (2000). Susceptibility of Ceratitis capitata Wiedemann (Diptera: Tephritidae) to entomopathogenic fungi and their extracts. Biological control, 19(3), 274-282. https://doi.org/10.1006/bcon.2000.0867 CR - Chandler, D. (2017). Basic and applied research on entomopathogenic fungi. In Microbial control of insect and mite pests (pp. 69-89). Academic Press. CR - Chen, W., Xie, W., Cai, W., Thaochan, N., & Hu, Q. (2021). Entomopathogenic Fungi Biodiversity in the Soil of Three Provinces Located in Southwest China and First Approach to Evaluate Their Biocontrol Potential. Journal of Fungi, 7, 984. https://doi.org/10.3390/jof7110984 CR - Chevrette, M.G., Carlson, C.M., Ortega, H.E., Thomas, C., Ananiev, G.E., Barns, K.J., & Currie, C.R. (2019). The antimicrobial potential of Streptomyces from insect microbiomes. Nature Communications, 10(1), 516. https://doi.org/10.1038/s41467-019-08438-0 CR - de Oliveira, G.P., Barreto, D.L.C., Ramalho Silva, M., Augusti, R., Evódio Marriel, I., Gomes de Paula Lana, U., & Takahashi, J.A. (2022). Biotic stress caused by in vitro co-inoculation enhances the expression of acetylcholinesterase inhibitors by fungi. Natural Product Research, 36(16), 4266-4270. https://doi.org/10.1080/14786419.2021.1975701 CR - Deka, B., Baruah, C., & Babu, A. (2021). Entomopathogenic microorganisms: their role in insect pest management. Egyptian Journal of Biological Pest Control, 31, 1-8. https://doi.org/10.1186/s41938-021-00466-7 CR - Diao, H., Xing, P., Tian, J., Han, Z., Wang, D., Xiang, H., ... & Ma, R. (2022). Toxicity of crude toxin protein produced by Cordyceps fumosorosea IF-1106 against Myzus persicae (Sulze). Journal of Invertebrate Pathology, 194, 107825. https://doi.org/10.1016/j.jip.2022.107825 CR - Erzurum, K. (2001). Gıdalarda mikotoksin oluşumunu etkileyen faktörler. Gıda, 26 (4), 289-293. Retrieved from: https://dergipark.org.tr/tr/pub/gida/issue/6931/92553 CR - Escriva, L., Agahi, F., Vila-Donat, P., Mañes, J., Meca, G., & Manyes, L. (2021). Bioaccessibility study of aflatoxin B1 and ochratoxin A in bread enriched with fermented milk whey and/or pumpkin. Toxins, 14(1), 6. https://doi.org/10.3390/toxins14010006 CR - Fancelli, M., Dias, A.B., Delalibera, I.J., Cerqueira de Jesus, S., Souza do Nascimento, A., & Oliveira e Silva, S. (2013). Beauveria bassiana Strains for Biological Control of Cosmopolites sordidus (Germ.) (Coleoptera: Curculionidae) in Plantain. BioMed Research International, 2013(1), 184756. https://doi.org/10.1155/2013/184756 CR - Fujita, S. (2013). Simple modified method for fungal slide preparation. Journal of Medical Mycology, 54(2), 141-146. https://doi.org/10.3314/mmj.54.141 CR - Glass, N.L., & Donaldson, G.C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61(4), 1323-30. https://10.1128/aem.61.4.1323-1330, PMID: 7747954; PMCID: PMC167388. CR - Gökçe, A., & Er, M.K. (2003). First description of the disease by Conidiobolus osmodes on Tipula paludosa larvae with the report of a natural epizootic. Journal of Invertebrate Pathology, 84(2), 83-89. https://doi.org/10.1016/j.jip.2003.09.004 CR - Gradmann, C. (2008). A matter of methods: the historicity of Koch's postulates. Medical Journal, 43(2), 121–148. https://www.jstor.org/stable/25805450 CR - Güner, P., Aşkun, T., & Er, A. (2023). Entomopathogenic Fungi and Their Potential Role in the Sustainable Biological Control of Storage Pests. Commagene Journal of Biology, 7(1), 90-97. https://doi.org/10.31594/commagene.1284354 CR - Güner, P., Aşkun, T., Er, A., & Sönmez, D.G. (2025). Assessment of the potential pathogenicity of Penicillium mallochii conidial suspensions and ethanol extract against almond moth Cadra cautella (Walker) (Lepidoptera: Pyralidae). Journal of Plant Diseases and Protection, 132, 3. https://doi.org/10.1007/s41348-024-01039-0 CR - Guo ZhiKai, G.Z., Gai CuiJuan, G.C., Cai CaiHong, C.C., Chen LiangLiang, C.L., Liu ShouBai, L.S., Zeng YanBo, Z.Y., Mei, W., & Dai HaoFu, D.H. (2017). Metabolites with insecticidal activity from Aspergillus fumigatus JRJ111048 isolated from mangrove plant Acrostichum specioum endemic to Hainan Island. Marine Drugs, 15(12), 381. https://doi.org/10.3390/md15120381 CR - Guyonnet, D., Belloir, C., Suschetet, M., Siess, M.H., & Le Bon, A.M. (2002). Mechanisms of Protection Against Aflatoxin B(1) Genotoxicity in Rats Treated by Organosulfur Compounds from Garlic. Carcinogenesis, 23(8), 1335-1341. https://doi.org/10.1093/carcin/23.8.1335 CR - Hall, T.A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. In Nucleic Acids Symposium Series, 41, 95–98. CR - Imamura, T., Todoriki, S., Sota, N., & Nakakita, H. (2004). Efect of sof-electron (low-energy electron) treatment on three stored-product insect pests. Journal of Stored Products Research, 40(2), 169–177. https://doi.org/10.1016/S0022-474X(02)00095-4 CR - Jacob, T.A., & Cox, P.D. (1977). The influence of temperature and humidity on the life-cycle of Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Journal of Stored Products Research, 13(3), 107-118. https://doi.org/10.1016/0022-474X(77)90009-1 CR - Karthi, S., Vaideki, K., Shivakumar, M.S., Ponsankar, A., Thanigaivel, A., Chellappandian, M., Hunter, W.B., & Senthil-Nathan, S. (2018). Effect of Aspergillus flavus on the mortality and activity of antioxidant enzymes of Spodoptera litura Fab. (Lepidoptera: Noctuidae) larvae. Pesticide Biochemistry and Physiology, 149, 54-60. https://doi.org/10.1016/j.pestbp.2018.05.009 CR - Kaur, S., Thakur, A., & Rajput, M. (2014). A laboratory assessment of the potential of Beauveria bassiana (Balsamo) Vuillemin as a biocontrol agent of Corcyra cephalonica Stainton (Lepidoptera: Pyralidae). Journal of Stored Products Research, 59, 185–189. https://doi.org/10.1016/j.jspr.2014.08.004 CR - Kaur, T., Kaur, J., Kaur, A., & Kaur, S. (2016). Larvicidal and growth inhibitory effects of endophytic Aspergillus niger on a polyphagous pest, Spodoptera litura. Phytoparasitica, 44, 465-476. https://doi.org/10.1007/s12600-016-0541-2 CR - Khan, H.A.A., & Khan, T. (2023). Efficacy of entomopathogenic fungi against three major stored insect pests, Rhyzopertha dominica, Sitophilus zeamais and Trogoderma granarium. Journal of Stored Products Research, 104, 102188. https://doi.org/10.1016/j.jspr.2023.102188 CR - Klich, M.A. (2002). Identification of common Aspergillus species. Centraalbureau voor schimmelcultures. CR - Koo, H.N., Yoon, S.H., Shin, Y.H., & Yoon, C. (2011). Efect of electron beam irradiation on developmental stages of Plutella xylostella (Lepidoptera: Plutellidae). Journal of Asia-Pacific Entomology, 14(3), 243–247. https://doi.org/10.1016/j.aspen.2011.03.001 CR - Koo, H.N., Yun, S.H., Yoon, C., & Kim, G.H. (2012). Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess). Radiation Physics and Chemistry, 81(1), 86–92. https://doi.org/10.1016/j.radphyschem.2011.09.008 CR - Letunic, I., & Bork, P. (2024). Interactive Tree of Life (iTOL) v6: recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research, 52(W1), W78-W82. https://doi.org/10.1093/nar/gkae268 CR - Lin, W.J., Chiu, M.C., Lin, C.C., Chung, Y.K., & Chou, J.Y. (2021). Efficacy of Entomopathogenic fungus Aspergillus nomius against Dolichoderus thoracicus. BioControl, 66(4), 463-473. https://doi.org/10.1007/s10526-021-10086-7 CR - Liu, S., Li, J., Feng, Q., Chu, L., Tan, Z., Ji, X., & Jin, P. (2023). Insecticidal Effect of the Entomopathogenic Fungus Lecanicillium araneicola HK-1 in Aphis craccivora (Hemiptera: Aphididae). Insects, 14(11), 860. https://doi.org/10.3390/insects14110860 CR - Liu, Y.J., Whelen, S., & Hall, B.D. (1999). Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Molecular Biology and Evolution, 16(12), 1799-1808. https://doi.org/10.1093/oxfordjournals.molbev.a026092 CR - Los, A., & Strachecka, A. (2018). Fast and Cost-Effective Biochemical Spectrophotometric Analysis of Solution of Insect Blood and Body Surface Elution. Sensors, 18(5), 1494. https://doi.org/10.3390/s18051494 CR - Mannaa, M., & Kim, K.D. (2017). Influence of temperature and water activity on deleterious fungi and mycotoxin production during grain storage. Mycobiology, 45(4), 240-254. https://doi.org/10.5941/MYCO.2017.45.4.240 CR - Marcinkevicius, K., Salvatore, S.A., Bardon, A.D.V., Cartagena, E., Arena, M.E., & Vera, N.R. (2017). Insecticidal activities of diketopiperazines of Nomuraea rileyi entomopathogenic fungus. International Journal of Environment, Agriculture and Biotechnology, 2(4), 1586-1596. https://doi.org/10.22161/ijeab/2.4.18 CR - Mensah, R.K., & Young, A. (2017). Microbial control of cotton pests: use of the naturally occurring entomopathogenic fungus Aspergillus sp.(BC 639) in the management of Bemisia tabaci (Genn.)(Hemiptera: Aleyrodidae) and beneficial insects on transgenic cotton crops. Biocontrol Science and Technology, 27(7), 844-866. https://doi.org/10.1080/09583157.2017.1349875 CR - Mohanty, S.S., & Prakash, S. (2010). Comparative efficacy and pathogenicity of keratinophilic soil fungi against Culex quinquefasciatus larvae. Indian Journal of Microbiology, 50, 299-302. https://doi.org/10.1007/s12088-010-0051-8 CR - Nguyen, B.T., Shuval, K., Bertmann, F., & Yaroch, A.L. (2015). The Supplemental Nutrition Assistance Program, food insecurity, dietary quality, and obesity among US adults. American Journal of Public Health, 105(7), 1453-1459. https://doi.org/10.2105/AJPH.2015.302580 CR - Nguyen, H.C., Lin, K.H., Nguyen, T.P., Le, H. S., Ngo, K.N., Pham, D.C., Su, C.H., & Barrow, C.J. (2023). Isolation and Cultivation of Penicillium citrinum for Biological Control of Spodoptera litura and Plutella xylostella. Fermentation, 9(5), 438. https://doi.org/10.3390/fermentation9050438 CR - Ningsih, B.N.S., Rukachaisirikul, V., Phongpaichit, S., Preedanon, S., Sakayaroj, J., & Muanprasat, C. (2023). A nonadride derivative from the marine-derived fungus Aspergillus chevalieri PSU-AMF79. Natural Product Research, 37(14), 2311-2318. https://doi.org/10.1080/14786419.2022.2039651 CR - Orozco, R.A., Lee, M.M., & Stock, S.P. (2014). Soil sampling and isolation of entomopathogenic nematodes (Steinernematidae, Heterorhabditidae). Journal of Visualized Experiments, 89, 52083. https://doi.org/10.3791/52083 CR - Pitt, J.I. (2000). Toxigenic fungi and mycotoxins. British Medical Bulletin, 56(1), 184-192. https://doi.org/10.1258/0007142001902888 CR - Roy, H., Steinkraus, D.C., Eilinberg, J., Hajek, A.E., & Pell, J.K. (2006). Bizarre interactions and endgames: entomopathogenic fungi and their arthropod hosts. Annual Review of Entomology, 51, 331–357. https://doi.org/10.1146/annurev.ento.51.110104.150941 CR - Rumbos, C.I., & Athanassiou, C.G. (2017). Use of entomopathogenic fungi for the control of stored-product insects: can fungi protect durable commodities. Journal of Pest Science, 90, 839–854. https://doi.org/10.1007/s10340-017-0849-9 CR - Şahin Taylan, Z., & Er, M.K. (2024). Mortality Effects of Beauveria bassiana and Purpureocillium lilacinum Isolates and Efficacy of a Wettable Formulation on Palemona prasina (Hemiptera: Pentatomidae) Nymphs. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 27(6), 1392-1400. https://doi.org/10.18016/ksutarimdoga.vi.1425131 CR - Sani, I., Ismail, S. I., Abdullah, S., Jalinas, J., Jamian, S., & Saad, N. (2020). A review of the biology and control of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with special reference to biological control using entomopathogenic fungi. Insects, 11(9), 619. https://doi.org/10.3390/insects11090619 CR - Schoch, C.L., Seifert, K.A., Huhndorf, S., Robert, V., Spouge, J.L., Levesque, C.A., & White, M.M. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109(16), 6241-6246. https://doi.org/10.1073/pnas.1117018109 CR - Senthilkumar, N., Murugesan, S., & Babu, D.S. (2014). Metabolite profiling of the extracts of endophytic fungi of entomopathogenic significance, Aspergillus flavus and Nigrospora sphaerica isolated from tropical tree species of India, Tectona grandis L. Journal of Agriculture and Life Sciences, 1(1), 108-114. CR - Shahrajabian, M.H., Kuang, Y., Cui, H., Fu, L., & Sun, W. (2023). Metabolic changes of active components of important medicinal plants on the basis of traditional Chinese medicine under different environmental stresses. Current Organic Chemistry, 27(9), 782-806. https://doi.org/10.2174/1385272827666230807150910 CR - Shakarami, J., Eftekharifar, R., Latifian, M., & Jafari, S. (2015). Insecticidal activity and synergistic effect of Beauvaria bassiana (Bals.) Vuill. and three botanical compounds against third instar larvae of Ephestia kuehniella Zeller. Research on Crops, 16(2), 296-303. https://doi.org/10.5958/2348-7542.2015.00044.3 CR - Singh, B.K., Delgado-Baquerizo, M., Egidi, E., Guirado, E., Leach, J.E., Liu, H., & Trivedi, P. (2023). Climate change impacts on plant pathogens, food security and paths forward. Nature Reviews Microbiology, 21(10), 640-656. https://doi.org/10.1038/s41579-023-00900-7 CR - Song, Y., Liu, X., Feng, S., Zhao, K., Qi, Z., Wu, W., ... & Qin, B. (2023). Discovery, Identification, and Insecticidal Activity of an Aspergillus flavus Strain Isolated from a Saline–Alkali Soil Sample. Microorganisms, 11(11), 2788. https://doi.org/10.3390/microorganisms11112788 CR - Spescha, A., Weibel, J., Wyser, L., Brunner, M., Hermida, M.H., Moix, A., & Maurhofer, M. (2023). Combining entomopathogenic Pseudomonas bacteria, nematodes and fungi for biological control of a below-ground insect pest. Agriculture, Ecosystems & Environment, 348, 108414. https://doi.org/10.1016/j.agee.2023.108414 CR - Srivastava, C.N., Maurya, P., Sharma, P., & Mohan, L. (2009). Prospective role of insecticides of fungal origin. Entomological Research, 39(6), 341-355. https://doi.org/10.1111/j.1748-5967.2009.00244.x CR - Talavera, G., & Castresana, J. (2007). Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic biology, 56(4), 564-577. https://doi.org/10.1080/10635150701472164 CR - Todoriki, S., Mahbub Hasan, M.D., Miyanoshita, A., & Imamura, T. (2006). Assessment of electron beam-induced DNA damage in larvae of chestnut weevil, Curculio sikkimensis (Heller) (Coleoptera: Curculionidae) using comet assay. Radiation Physics and Chemistry, 75(2), 292–296. https://doi.org/10.1016/j.radphyschem.2005.08.001 CR - Wang, Z., Jin, Q., Li, Q., Ou, X., Li, S., Liu, Z., & Huang, J.A. (2022). Multiplex PCR identification of Aspergillus cristatus and Aspergillus chevalieri in Liupao tea based on orphan genes. Foods, 11(15), 2217. https://doi.org/10.3390/foods11152217 CR - Warcup, J.H. (1955). On the origin of colonies of fungi developing on soil dilution plates. Transactions of the British Mycological Society, 38(3), 298-301. https://doi.org/10.1016/S0007-1536(55)80075-7 CR - White, T.J., Bruns, T., Lee, S., & Taylor, J.W. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds.) PCR Proto-cols: A Guide to Methods and Applications. Academic Press, Inc., New York, 315–322. CR - Yan, J., Liu, H., Idrees, A., Chen, F., Lu, H., Ouyang, G., & Meng, X. (2022). First record of Aspergillus fijiensis as an entomopathogenic fungus against Asian Citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Journal of Fungi, 8(11), 1222. https://doi.org/10.3390/jof8111222 CR - Yun, S.H., Lee, S.W., Koo, H.N., & Kim, G.H. (2014). Assessment of electron beam-induced abnormal development and DNA damage in Spodoptera litura (F.) (Lepidoptera: Noctuidae). Radiation Physics and Chemistry, 96, 44–49. https://doi.org/10.1016/j.radphyschem.2013.08.008 CR - Zhang, S., Huang, Z., Xu, H., Liu, Q., Jiang, Z., Yin, C., Han, G., Zhang, W., & Zhang, Y. (2024a). Biological control of wheat powdery mildew disease by the termite‐associated fungus Aspergillus chevalieri BYST01 and potential role of secondary metabolites. Pest Management Science, 80(4), 2011-2020. https://doi.org/10.1002/ps.7938 CR - Zhang, P.Z.P., You YinWei, Y.Y., Song Yuan, S.Y., Wang YouZhi, W.Y., & Zhang Long, Z.L. (2015). First record of Aspergillus oryzae (Eurotiales: Trichocomaceae) as an entomopathogenic fungus of the locust, Locusta migratoria (Orthoptera: Acrididae). Biocontrol Science and Technolgy, 25, 1285–1298. https://doi.org/10.1080/09583157.2015.1049977 CR - Zhang, Z., Tian, Y., Sui, L., Lu, Y., Cheng, K., Zhao, Y., Li, Q., & Shi, W. (2024b). First record of Aspergillus nomiae as a broad-spectrum entomopathogenic fungus that provides resistance against phytopathogens and insect pests by colonization of plants. Frontiers in Microbiology, 14, 1284276. https://doi.org/10.3389/fmicb.2023.1284276 CR - Zin, W.W.M., Buttachon, S., Dethoup, T., Pereira, J.A., Gales, L., Inácio, Â., Costa, P.M., Lee, M., Şekeroğlu, N., Pinto, M.M.M., & Kijjoa, A. (2017). Antibacterial and antibiofilm activities of the metabolites isolated from the culture of the mangrove-derived endophytic fungus Eurotium chevalieri KUFA 0006. Phytochemistry, 141, 86-97. https://doi.org/10.1016/j.phytochem.2017.05.015 UR - https://doi.org/10.31594/commagene.1709718 L1 - https://dergipark.org.tr/tr/download/article-file/4917019 ER -