TY - JOUR T1 - Evaluation of The Quality Characteristics of Dried Erzincan Tulum Cheese by Hot Air Circulation Dryer at Different Temperatures TT - Farklı Sıcaklıklarda Sıcak Hava Sirkülasyonlu Kurutucu ile Kurutulan Erzincan Tulum Peynirinin Kalite Özelliklerinin Değerlendirilmesi AU - Ertugay, Mustafa Fatih AU - Batmaz, Bekir PY - 2025 DA - December Y2 - 2025 JF - Erzincan University Journal of Science and Technology PB - Erzincan Binali Yıldırım Üniversitesi WT - DergiPark SN - 2149-4584 SP - 828 EP - 841 VL - 18 IS - 3 LA - en AB - Erzincan Tulum Cheese is produced from sheep’s milk with high fat content in dry matter and protected by geographical indication and it is one of the most known tulum cheeses in the geography of our country. The aim of this study is to provide a new usage area for Erzincan tulum cheese, which has the highest recognition among the locally produced cheeses in our country. For this purpose, drying process has been used not only to extend the shelf life of cheese, but also to develop a new product format for consumers as traditional dried cheese in powder form. Erzincan tulum cheese was granulated by drying in a cabinet type tray dryer and the physical, chemical, microbiological and sensory properties of the produced cheese powders were investigated. The drying process was carried out in a hot air circulation drying oven at temperatures of 40, 50 and 60°C and constant air velocity until the moisture content in the final product reached approximately 10%. As a result of the physical, chemical, and sensory analyses performed on the dried and granulated final product; it was determined that 50°C and 210 min time application gave the best result. It was concluded that this new form will enable to use as a spice in soups, pizzas, pasta, chips, sauces and meals. KW - Erzincan Tulum Cheese KW - cheese drying KW - hot air circulation drying KW - powdered cheese N2 - Erzincan Tulum Peyniri, kuru maddede yüksek yağ oranına sahip koyun sütünden üretilen ve coğrafi işaret ile koruma altına alınan, ülkemiz coğrafyasında en çok bilinen tulum peynirlerinden biridir. Bu çalışmanın amacı, ülkemizde yerel olarak üretilen peynirler arasında bilinirliği en yüksek olan Erzincan tulum peynirine yeni bir kullanım alanı sağlamaktır. Bu amaçla, kurutma işlemi sadece peynirin raf ömrünü uzatmak için değil, aynı zamanda tüketiciler için toz halinde geleneksel kurutulmuş peynir olarak yeni bir ürün formatı geliştirmek için de kullanılmıştır. Erzincan tulum peyniri dolap tipi tepsili kurutucuda kurutularak granül haline getirilmiş ve üretilen peynir tozlarının fiziksel, kimyasal, mikrobiyolojik ve duyusal özellikleri incelenmiştir. Kurutma işlemi sıcak hava sirkülasyonlu kurutma fırınında 40, 50 ve 60°C sıcaklıklarda ve sabit hava hızında son üründeki nem içeriği yaklaşık %10'a ulaşana kadar gerçekleştirilmiştir. Kurutulmuş ve granüle edilmiş nihai ürün üzerinde yapılan fiziksel, kimyasal ve duyusal analizler sonucunda; 50°C ve 210 dk. süre uygulamasının en iyi sonucu verdiği tespit edilmiştir. Bu yeni formun çorbalarda, pizzalarda, makarnalarda, cipslerde, soslarda ve yemeklerde üst malzemesi olarak kullanılabileceği sonucuna varılmıştır. CR - [1] Hastaoğlu, E., Erdoğan, M., & Işkın, M. (2021). Gastronomi turizmi kapsamında Türkiye peynir çeşitliliği haritası. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 25(3), 1084–1113. https://doi.org/10.53487/ataunisosbil.958028 CR - [2] Kamber, U. (2015). Traditional Turkey cheeses and their classification. Van Veterinary Journal, 26(3), 161–171. https://doi.org/10.29185/vanvetj.251045 CR - [3] Hayaloğlu, A. A. (2008). Türkiye’nin peynirleri-Genel bir perspektif. Türkiye 10. Gıda Kongresi, 21-23 Mayıs, Erzurum. CR - [4] Çakmakçı, S., & Çakır, Y. (2012). Erzincan Tulum (Şavak) peyniri ve benzeri peynirlerimiz. 3. Geleneksel Gıdalar Sempozyumu, 10-12 Mayıs, Konya, Türkiye. CR - [5] Çakır, Y., & Çakmakçı, S. (2020). Comparison of some quality properties of Erzincan tulum cheeses produced from raw and pasteurized Akkaraman sheep milk. Turkish Journal of Agricultural and Natural Sciences, 7(4), 972–982. https://doi.org/10.30910/turkjans.761327 CR - [6] Ergene, G., & Arslan, S. (2019). Chemical and sensory characteristics of dried çökelek cheeses at different temperatures. Journal of Food Processing and Preservation, 43(6), e13985. https://doi.org/10.1111/jfpp.13985 [7] Fox, P. F., Guinee, T. P., Cogan, T. M., & McSweeney, P. L. H. (2017). Cheese as an ingredient. In Fundamentals of Cheese Science (2nd ed., pp. 629–679). Springer. https://doi.org/10.1007/978-1-4899-7681-9_18 CR - [8] Guinee, T. P., & Kilcawley, K. N. (2017). Ingredient cheese and cheese-based ingredients. In P. F. Fox, P. L. H. McSweeney, T. M. Cogan, & T. P. Guinee (Eds.), Cheese (pp. 715–755). Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.00661-2 CR - [9] Deshwal, G. K., Akshit, F. N. U., Altay, I., & Huppertz, T. (2024). A review on the production and characteristics of cheese powders. Foods, 13(14), 2204. https://doi.org/10.3390/foods13142204 [10] Köprüalan, Ö., Elmas, F., Bodruk, A., Arıkaya, Ş., Koç, M., & Koca, N. (2020). Drying kinetics of reduced fat white cheese dried by different methods. Gıda, 45(6), 1201–1214. https://doi.org/10.15237/gida.GD20107 CR - [11] Varming, C., Beck, T. K., Petersen, M. A., & Ardö, Y. (2011). Impact of processing steps on the composition of volatile compounds in cheese powders. International Journal of Dairy Technology, 64(2), 197–206. https://doi.org/10.1111/j.1471-0307.2010.00650.x CR - [12] Ceylan Şahin, C., Erbay, Z., & Koca, N. (2018). The physical, microstructural, chemical and sensorial properties of spray dried full-fat white cheese powders stored in different multilayer packages. Journal of Food Engineering, 229, 57–64. https://doi.org/10.1016/j.jfoodeng.2017.11.022 CR - [13] Felix Da Silva, D., Ahrné, L., Larsen, F. H., Hougaard, A. B., & Ipsen, R. (2018). Physical and functional properties of cheese powders affected by sweet whey powder addition before or after spray drying. Powder Technology, 323, 139–148. https://doi.org/10.1016/j.powtec.2017.10.014 CR - [14] Ma, X., Wang, J., Lu, X., & Qiao, C. A. (2013). Two-stage process for the production of a novel cheese flavor powder. Journal of Food Process Engineering, 36, 591–597. https://doi.org/10.1111/j.1745-4530.2011.00677.x CR - [15] Urgu, M., Ünlütürk, S., & Koca, N. (2018). Effects of fat reduction on the stability, microstructure, rheological and color characteristics of white-brined cheese emulsion with different emulsifying salt amounts. Korean Journal for Food Science of Animal Resources, 38(5), 866–877. https://doi.org/10.5851/kosfa.2018.e8 CR - [16] Urgu, M., Türk, A., Ünlütürk, S., Kaymak-Ertekin, F., & Koca, N. (2019). Milk fat substitution by microparticulated protein in reduced-fat cheese emulsion: The effects on stability, microstructure, rheological and sensory properties. Food Science and Animal Resources, 39(1), 23–34. https://doi.org/10.5851/kosfa.2018.e60 CR - [17] AOAC (1990). In K. Helrich (Ed.), Official Methods of Analysis (15th ed.). Arlington, VA, USA: Association of Official Analytical Chemists, Inc. CR - [18] Kurt, A., Cakmakci, S., & Caglar, A., (2007). Süt ve Mamülleri Muayene Analiz Metotları Rehberi. Atatürk Üniversitesi Ziraat Fakültesi Yayınları No: 257, 398 p, Erzurum, Turkey (In Turkish). [19] Savello, P. A., Ernstrom, C. A., & Kalab, M. (1989). Microstructure and meltability of model process cheese made with rennet and acid casein. Journal of Dairy Science, 72(1), 1–11. https://doi.org/10.3168/jds.S0022-0302(89)79073-1 CR - [20] Askari, G. R., Emam-Djomeh, Z., & Mousavi, S. M. (2008). Investigation of the effects of microwave treatment on the optical properties of apple slices during drying. Drying Technology, 26(10), 1362–1368. https://doi.org/10.1080/07373930802463342 CR - [21] Erbay, Z., & Koca, N. (2015). Effects of whey or maltodextrin addition during production on physical quality of white cheese powder during storage. Journal of Dairy Science, 98(12), 8391–8404. https://doi.org/10.3168/jds.2015-9765 CR - [22] Koca, N., Erbay, Z., & Kaymak-Ertekin, F. (2015). Effects of spray-drying conditions on the chemical, physical, and sensory properties of cheese powder. Journal of Dairy Science, 98(5), 2934–2943. https://doi.org/10.3168/jds.2014-9111 CR - [23] Tülek, Y., & Demiray, E. (2014). Effect of hot air drying and different pretreatments on color and drying characteristics of persimmons. Journal of Agricultural Sciences, 20(1), 27–37. CR - [24] Erbay, Z., Koca, N., Kaymak‐Ertekin, F., & Ucuncu, M. (2015). Optimization of spray drying process in cheese powder production. Food and Bioproducts Processing, 93, 156–165. https://doi.org/10.1016/j.fbp.2013.12.008 CR - [25] Guiné, R. (2018). The drying of foods and its effect on the physical, chemical, sensorial and nutritional properties. International Journal of Food Engineering, 4(2), 93–100. https://doi.org/10.18178/ijfe.4.2.93-100 CR - [26] Tarapata, J., Szymańska, E., van der Meulen, L., Miltenburg, J., & Huppertz, T. (2025). Moisture loss from cheese during baking: Influence of cheese type, cheese mass, and temperature. Foods, 14(2), 165. https://doi.org/10.3390/foods14020165 CR - [27] Hwang, I. S., Lee, K. B., Shin, Y. K., Baik, M. Y., & Kim, B. Y. (2015). Effect of drying and storage on the rheological characteristics of mozzarella cheese. Food Science and Biotechnology, 24(6), 2041–2044. https://doi.org/10.1007/s10068-015-0271-0 CR - [28] Center for Dairy Research. (2000). The melt and stretch of cheese. Dairy Pipeline, 12(1). CR - [29] Schuck, P. (2014). Effects of drying on milk proteins. In Milk Proteins (pp. 319–342). Elsevier. https://doi.org/10.1016/B978-0-12-374039-7.00009-X CR - [30] Domínguez-Niño, A., Cantú-Lozano, D., Ragazzo-Sanchez, J. A., Andrade-González, I., & Luna-Solano, G. (2018). Energy requirements and production cost of the spray drying process of cheese whey. Drying Technology, 36(5), 597–608. https://doi.org/10.1080/07373937.2018.1425143 CR - [31] Izadi, Z., Mohebbi, M., Shahidi, F., Varidi, M., & Salahi, M. R. (2020). Cheese powder production and characterization: A foam-mat drying approach. Food and Bioproducts Processing, 123, 225–237. https://doi.org/10.1016/j.fbp.2020.02.004 CR - [32] Salahi, M. R., Mohebbi, M., & Taghizadeh, M. (2017). Development of cantaloupe (Cucumis melo) pulp powder using foam-mat drying method: Effects of drying conditions on microstructural of mat and physicochemical properties of powder. Drying Technology, 35(15), 1897–1908. https://doi.org/10.1080/07373937.2017.1291518 CR - [33] Viuda-Martos, M., Ruiz-Navajas, Y., Martín-Sánchez, A., Sánchez-Zapata, E., Fernández-López, J., Sendra, E., Sayas-Barberá, E., Navarro, C., & Pérez-Álvarez, J. A. (2012). Chemical, physico-chemical and functional properties of pomegranate (Punica granatum L.) bagasses powder co-product. Journal of Food Engineering, 110(2), 220–224. https://doi.org/10.1016/j.jfoodeng.2011.05.029 CR - [34] Dehghannya, J., Pourahmad, M., Ghanbarzadeh, B., & Ghaffari, H. (2018). Influence of foam thickness on production of lime juice powder during foam mat drying: Experimental and numerical investigation. Powder Technology, 328, 470–484. https://doi.org/10.1016/j.powtec.2018.01.015 CR - [35] Montoya-Ballesteros, L. C., González-León, A., García-Alvarado, M. A., & Rodríguez-Jimenes, G. C. (2014). Bioactive compounds during drying of chili peppers. Drying Technology, 32(12), 1486–1499. https://doi.org/10.1080/07373937.2014.902381 CR - [36] Bi, Y. X., Zielinska, S., Ni, J. B., Li, X. X., Xue, X. F., Tian, W. L., Peng, W. J., & Fang, X. M. (2022). Effects of hot-air drying temperature on drying characteristics and color deterioration of rape bee pollen. Food Chemistry, 16, 100464. https://doi.org/10.1016/j.foodchem.2022.100464 CR - [37] Michalska, A., Honke, J., Łysiak, G., & Andlauer, W. (2016). Effect of drying parameters on the formation of early and intermediate stage products of the Maillard reaction in different plum (Prunus domestica L.) cultivars. LWT - Food Science and Technology, 65, 932–938. https://doi.org/10.1016/j.lwt.2015.09.029 CR - [38] Wongwiwat, P., & Wattanachant, S. (2016). Color characteristics and Maillard reactions of chicken meat jerky with different sweeteners during storage. Walailak Journal of Science and Technology (WJST), 13(3), 141–155. https://doi.org/10.14456/WJST.2016.15 CR - [39] Aktağ, I. G., & Gökmen, V. (2021). Investigations on the formation of α-dicarbonyl compounds and 5-hydroxymethylfurfural in fruit products during storage: New insights into the role of Maillard reaction. Food Chemistry, 363, 130280. https://doi.org/10.1016/j.foodchem.2021.130280 CR - [40] Adekunte, J. A., Ragain, J. C., & Johnston, W. M. (2010). Minimum color differences for discriminating mismatch between composite and tooth color. Journal of Prosthetic Dentistry, 103(5), 325–331. https://doi.org/10.1016/S0022-3913(10)60069-2 CR - [41] Kongo, M., & Malcata, F. X. (2016). Cheese: Chemistry and microbiology. In Encyclopedia of Food and Health (pp. 735–740). Elsevier. https://doi.org/10.1016/B978-0-12-384947-2.00135-5 CR - [42] TGK (Türk Gıda Kodeksi). Mikrobiyolojik 2011. Kriterler Yönetmeliği, Resmi Gazete Tarihi: 29.12.2011, Sayı: 28157. CR - [43] Sung, N., & Collins, M. T. (2000). Effect of three factors in cheese production (pH, salt, and heat) on Mycobacterium avium subsp. paratuberculosis viability. Applied and Environmental Microbiology, 66(4), 1334–1339. https://doi.org/10.1128/AEM.66.4.1334-1339.2000 CR - [44] Ghandi, A., Powell, I., Chen, X. D., & Adhikari, B. (2012). Drying kinetics and survival studies of dairy fermentation bacteria in convective air drying environment using single droplet drying. Journal of Food Engineering, 110(3), 405–417. https://doi.org/10.1016/j.jfoodeng.2011.12.031 CR - [45] Possas, A., Bonilla-Luque, O. M., & Valero, A. (2021). From cheese-making to consumption: Exploring the microbial safety of cheeses through predictive microbiology models. Foods, 10(2), 355. https://doi.org/10.3390/foods10020355 UR - https://dergipark.org.tr/tr/pub/erzifbed/issue//1709912 L1 - https://dergipark.org.tr/tr/download/article-file/4917840 ER -