TY - JOUR T1 - Sentiment Analysis of Online Customer Reviews Using Modern Natural Language Processing Approaches TT - Modern Doğal Dil İşleme Yaklaşımları Kullanarak Çevrimiçi Müşteri Yorumlarının Duygu Analizi AU - Koruyan, Kutan PY - 2025 DA - September Y2 - 2025 DO - 10.29157/etusbed.1711500 JF - Erzurum Teknik Üniversitesi Sosyal Bilimler Enstitüsü Dergisi JO - ETÜSBED PB - Erzurum Teknik Üniversitesi WT - DergiPark SN - 2717-8706 SP - 22 EP - 40 IS - 23 LA - en AB - In this study, sentiment analysis was conducted using Turkish online customer reviews of four seafood restaurants based in İzmir. Modern natural language processing approaches were employed as part of the analysis, including a Turkish sentiment analysis model for BERT and multilingual models within the framework of zero-shot text classification. In addition, large language models (LLMs) such as OpenAI 4o, Gemini 2.0 Flash, and DeepSeek V3 were evaluated. Model performance was assessed using evaluation metrics, including accuracy, precision, recall, and F1 score. The findings indicate that LLMs—particularly DeepSeek V3—demonstrated high performance and could effectively process contextual representations even in unlabelled datasets.Furthermore, sentiment trends towards restaurants over a four years were analysed to track temporal changes in customer satisfaction. This approach revealed temporal performance differences among the restaurants over time and enabled the development of sustainable improvement strategies aligned with customer expectations. The proposed method offers a fast and data-driven solution to assist managers in monitoring customer satisfaction, evaluating service quality, and identifying underlying causes of dissatisfaction, supporting strategic decision-making processes and contributing to corporate image management. KW - Sentiment Analysis KW - BERT KW - Zero-Shot Text Classification KW - Large Language Models KW - Natural Language Processing N2 - Bu çalışmada, İzmir’de faaliyet gösteren dört deniz ürünleri restoranına yapılan Türkçe çevrimiçi müşteri yorumları kullanılarak duygu analizi gerçekleştirilmiştir. Analiz sürecinde modern doğal dil işleme yaklaşımlarından yararlanılmış; bunlar arasında BERT için kullanılan bir Türkçe duygu analizi modeli ile sıfır atışlı metin sınıflandırma yöntemi kapsamında kullanılan çok dilli modeller yer almaktadır. Bunlara ek olarak, OpenAI 4o, Gemini 2.0 Flash ve DeepSeek V3 gibi Büyük Dil Modelleri (BDM) de değerlendirmeye dahil edilmiştir. Model performansları doğruluk, kesinlik, duyarlılık ve F1 puanı metrikleri aracılığıyla ölçülmüştür. Elde edilen bulgular, özellikle DeepSeek V3 başta olmak üzere BDM’lerin yüksek performans sergilediğini ve bağlamsal temsilleri etiketlenmemiş veri kümelerinde dahi etkili biçimde işleyebildiğini ortaya koymaktadır.Ayrıca müşteri memnuniyetindeki zamansal değişimleri izleyebilmek amacıyla restoranlara yönelik dört yıllık bir dönemdeki duygu eğilimleri analiz edilmiştir. Bu yaklaşım sayesinde restoranların zaman içerisindeki performans farklılıkları ortaya konmakta ve müşteri beklentilerine yönelik sürdürülebilir iyileştirme stratejilerinin geliştirilmesine olanak tanınmaktadır. Önerilen yöntem, yöneticilerin müşteri memnuniyetini izlemeleri, hizmet kalitesini değerlendirmeleri ve olası memnuniyetsizlik nedenlerini tespit etmeleri açısından hızlı ve veri odaklı bir çözüm sunmakta; böylece stratejik karar alma süreçlerini desteklemekte ve kurumsal imaj yönetimine katkı sağlamaktadır. CR - Akter, P., Hossain, S., Siddique, M. T., Ayub, M. I., Nath, A., Nath, P. C., Rasel, M., & Hassan, M. M. (2025). Sentiment Analysis of Consumer Feedback and Its Impact on Business Strategies by Machine Learning. The American Journal of Applied Sciences, 07 (01), 6–16. doi:10.37547/tajas/volume07issue01-02 CR - Al-Barrak, M. A., & Al-Alawi, A. I. (2024). Sentiment Analysis on Customer Feedback for Improved Decision Making: A Literature Review. In 2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS) (pp. 207–212). IEEE. doi:10.1109/icetsis61505.2024.10459452 CR - Almalis, I., Kouloumpris, E., & Vlahavas, I. (2022). Sector-Level Sentiment Analysis with Deep Learning. Knowledge-Based Systems, 258 (109954), 109954. doi:10.1016/j.knosys.2022.109954 CR - Alrehili, A., & Albalawi, K. (2019). Sentiment Analysis of Customer Reviews Using Ensemble Method. In 2019 International Conference on Computer and Information Sciences (ICCIS). IEEE. doi:10.1109/iccisci.2019.8716454 CR - Arılı Öztürk, E., Turan Gökduman, C., & Çanakçi, B. C. (2025). Evaluation of the performance of ChatGPT‐4 and ChatGPT‐4o as a learning tool in endodontics. International Endodontic Journal (Early View). doi:10.1111/iej.14217 CR - Beltagy, I., Lo, K., & Cohan, A. (2019). SciBERT: A pretrained language model for scientific text. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 3615-3620). Association for Computational Linguistics. doi:10.18653/v1/d19-1371 CR - Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021). On the Dangers of Stochastic Parrots. In FAccT ’21: 2021 ACM Conference on Fairness, Accountability, and Transparency (pp. 610-623). Association for Computing Machinery. doi:10.1145/3442188.3445922 CR - Bharathi Mohan, G., Prasanna Kumar, R., Vishal Krishh, P., Keerthinathan, A., Lavanya, G., Meghana, M. K. U., Sulthana, S., & Doss, S. (2024). An Analysis of Large Language Models: Their Impact and Potential Applications. Knowledge and Information Systems, 66 (9), 5047–5070. doi:10.1007/s10115-024-02120-8 CR - Birim, A., Erden, M., & Arslan, L. M. (2021). Zero-shot Turkish Text Classification. In 2021 29th Signal Processing and Communications Applications Conference (SIU). IEEE. doi:10.1109/siu53274.2021.9477864 CR - Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language Models are Few-Shot Learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, & H. Lin (Eds.), 34th International Conference on Neural Information Processing Systems (pp. 1877–1901), Curran Associates Inc. doi:10.5555/3495724.3495883 CR - Çelik, E., & Dalyan, T. (2023). Unified Benchmark for Zero-Shot Turkish Text Classification. Information Processing & Management, 60 (3), 103298. doi:10.1016/j.ipm.2023.103298 CR - Celuch, K., Robinson, N. M., & Walsh, A. M. (2015). A Framework for Encouraging Retail Customer Feedback. Journal of Services Marketing, 29 (4), 280–292. doi:10.1108/jsm-02-2014-0062 CR - Cernian, A., Sgarciu, V., & Martin, B. (2015). Sentiment Analysis from Product Reviews Using SentiWordNet as Lexical Resource. In 2015 7th International Conference on Electronics, Computers and Artificial Intelligence (ECAI) (WE-15 - WE-18). IEEE. doi:10.1109/ecai.2015.7301224 CR - Chakraborty, S. (2023). Sentiment Analysis in the Perspective of Natural Language Processing. International Journal for Research in Applied Science and Engineering Technology, 11 (11), 2235–2241. doi:10.22214/ijraset.2023.56925 CR - Chaudhary, S. (2024). Now Streaming Sentiments: A Comparative Analysis of GPT and Gemini in Evaluation of OTT Streaming Show Reviews. In 2024 Conference on AI, Science, Engineering, and Technology (AIxSET) (pp. 61–68). IEEE. doi:10.1109/aixset62544.2024.00014 CR - Chen, M.-J., & Farn, C.-K. (2020). Examining the Influence of Emotional Expressions in Online Consumer Reviews on Perceived Helpfulness. Information Processing & Management, 57 (6), 102266. doi:10.1016/j.ipm.2020.102266 CR - Conneau, A., Khandelwal, K., Goyal, N., Chaudhary, V., Wenzek, G., Guzmán, F., Grave, E., Ott, M., Zettlemoyer, L., & Stoyanov, V. (2019). Unsupervised Cross-lingual Representation Learning at Scale (Version 2). arXiv. doi:10.48550/ARXIV.1911.02116 CR - Davison, J. (2024). XLM-RoBERTa-Large-XNLI. Hugging Face. https://huggingface.co/joeddav/xlm-roberta-large-xnli (February 3, 2025) CR - DeepSeek-AI, Liu, A., Feng, B., Xue, B., Wang, B., Wu, B., Lu, C., Zhao, C., Deng, C., Zhang, C., Ruan, C., Dai, D., Guo, D., Yang, D., Chen, D., Ji, D., Li, E., Lin, F., Dai, F., ... Pan, Z. (2024). DeepSeek-V3 Technical Report (Version 2). arXiv. doi:10.48550/ARXIV.2412.19437 CR - Deng, S., Sinha, A. P., & Zhao, H. (2017). Resolving Ambiguity in Sentiment Classification. ACM Transactions on Management Information Systems, 8 (2–3), 1–13. doi:10.1145/3046684 CR - Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. ArXiv. doi:10.48550/ARXIV.1810.04805 CR - Dheemonth, K., Manonmani, S., Shobha, G., & De Hilster, D. (2024). Sentiment Analysis on Cricket Tweets Using NLP++. In 2024 15th International Conference on Computing Communication and Networking Technologies (ICCCNT). IEEE. doi:10.1109/icccnt61001.2024.10724047 CR - Eshkevari, M., Jahangoshai Rezaee, M., Saberi, M., & Hussain, O. K. (2022). An End-To-End Ranking System Based on Customers Reviews: Integrating Semantic Mining and MCDM Techniques. Expert Systems with Applications, 209 (118294), 118294. doi:10.1016/j.eswa.2022.118294 CR - Faizi, R., & El Fkihi, S. (2019). Exploring the role of customer reviews in driving business growth. In P. Kommers & G. C. Peng (Eds.), ICT, Society and Human Beings 2019, Connected Smart Cities 2019, Web Based Communities and Social Media 2019 (pp. 410-414). IADIS Press. doi:10.33965/wbc2019_201908c053 CR - Fundin, A. P., & Bergman, B. L. S. (2003). Exploring the Customer Feedback Process. Measuring Business Excellence, 7 (2), 55–65. doi:10.1108/13683040310477995 CR - Garrido-Merchan, E. C., Gozalo-Brizuela, R., & Gonzalez-Carvajal, S. (2023). Comparing BERT Against Traditional Machine Learning Models in Text Classification. Journal of Computational and Cognitive Engineering, 2 (4), 352–356. doi:10.47852/bonviewjcce3202838 CR - Gera, A., Halfon, A., Shnarch, E., Perlitz, Y., Ein-Dor, L., & Slonim, N. (2022). Zero-Shot Text Classification with Self-Training. In Y. Goldberg, Z. Kozareva, & Y. Zhang (Eds.), 2022 Conference on Empirical Methods in Natural Language Processing (pp. 1107–1119). Association for Computational Linguistics. doi:10.18653/v1/2022.emnlp-main.73 CR - Google Cloud (2025). Gemini 2.0 Flash. https://cloud.google.com/vertex-ai/generative-ai/docs/models/gemini/2-0-flash (May 8, 2025) CR - Hauthal, E., Burghardt, D., Fish, C., & Griffin, A. L. (2020). Sentiment Analysis. Audrey Kobayashi (Ed.), International Encyclopedia of Human Geography (Secon Edition). Elsevier, 169–177. doi:10.1016/b978-0-08-102295-5.10593-1 CR - He, P., Gao, J., & Chen, W. (2021). DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing (Version 4). arXiv. doi:10.48550/ARXIV.2111.09543 CR - Hemalatha, B., & Velmurugan, T. (2020). Impact of Customer Feedback System Using Machine Learning Algorithms for Sentiment Mining. International Journal of Innovative Technology and Exploring Engineering, 9 (4), 1475–1483. doi:10.35940/ijitee.d1537.029420 CR - Hennig-Thurau, T., Gwinner, K. P., Walsh, G., & Gremler, D. D. (2004). Electronic Word-Of-Mouth via Consumer-Opinion Platforms: What Motivates Consumers to Articulate Themselves on the Internet?. Journal of Interactive Marketing, 18 (1), 38–52. doi:10.1002/dir.10073 CR - Henrickson, K., Rodrigues, F., & Pereira, F. C. (2019). Data Preparation. Constantinos Antoniou, Loukas Dimitriou, & Francisco Pereira (Eds.), Mobility Patterns, Big Data and Transport Analytics. Elsevier, 73–106. doi:10.1016/b978-0-12-812970-8.00005-1 CR - Hudson, M. (2008). Listening to Customers: How EBSCO Plans Enhancements and Product Acquisitions Based on Customer Feedback. Public Library Quarterly, 27 (2), 151–156. doi:10.1080/01616840802114978 CR - İncidelen, M., & Aydoğan, M. (2025). Sentiment Analysis in Turkish Using Language Models: A Comparative Study. European Journal of Technique (EJT), 15 (1), 68-74. doi:10.36222/ejt.1592448 CR - Kalaivani, K. S., & Kuppuswami, S. (2023). Exploring The Use of Syntactic Dependency Features for Document-Level Sentiment Classification. Bulletin of the Polish Academy of Sciences Technical Sciences, 67 (2), 339-347. doi:10.24425/bpas.2019.128608 CR - Kapočiūtė-Dzikienė, J., Damaševičius, R., & Woźniak, M. (2019). Sentiment Analysis of Lithuanian Texts Using Traditional and Deep Learning Approaches. Computers, 8 (1), 4. doi:10.3390/computers8010004 CR - Karuna, N. M. H., Suarjaya, I. M. A. D., & Sutramiani, N. P. (2024). Sentiment Analysis of Hotel Reviews Using Logistic Regression and Random Forest Methods. JITTER : Jurnal Ilmiah Teknologi Dan Komputer, 5 (3), 2233. doi:10.24843/jtrti.2024.v05.i03.p04 CR - Katole, H. J. (2022). A Research Article on Importance of Online Customer Reviews on Customer Purchase. The Business & Management Review, 13 (03), 23–30. doi:10.24052/bmr/v13nu03/art-04 CR - Kayakuş, M., Yiğit Açikgöz, F., Dinca, M. N., & Kabas, O. (2024). Sustainable Brand Reputation: Evaluation of iPhone Customer Reviews with Machine Learning and Sentiment Analysis. Sustainability, 16 (14), 6121. doi:10.3390/su16146121 CR - Khan, A., Majumdar, D., & Mondal, B. (2025). Sentiment Analysis of Emoji Fused Reviews Using Machine Learning and Bert. Scientific Reports, 15 (1). doi:10.1038/s41598-025-92286-0 CR - Kotsonis, M. E., Abramson, S. R., Loeb, K. C., & Wattenbarger, B. L. (1989). In The Customer’s Hands: Making the Most of User Feedback. AT & T Technical Journal, 68 (5), 69–79. doi:10.1002/j.1538-7305.1989.tb00088.x CR - Kyritsis, K., Perikos, I., & Paraskevas, M. (2023). Zero-Shot Sentiment Analysis Exploring BART Models. In 2023 IEEE/ACIS 8th International Conference on Big Data, Cloud Computing, and Data Science (BCD) (pp. 192–197). IEEE. doi:10.1109/bcd57833.2023.10466289 CR - Laksono, R. A., Sungkono, K. R., Sarno, R., & Wahyuni, C. S. (2019). Sentiment Analysis of Restaurant Customer Reviews On Tripadvisor Using Naïve Bayes. In 2019 12th International Conference on Information & Communication Technology and System (ICTS). IEEE. doi:10.1109/icts.2019.8850982 CR - Laurer, M., van Atteveldt, W., Casas, A., & Welbers, K. (2023). Less Annotating, More Classifying: Addressing the Data Scarcity Issue of Supervised Machine Learning with Deep Transfer Learning and BERT-NLI. Political Analysis, 32 (1), 84–100. doi:10.1017/pan.2023.20 CR - Lebret, R., & Collobert, R. (2014). N-Gram-Based Low-Dimensional Representation for Document Classification. ArXiv. doi:10.48550/ARXIV.1412.6277 CR - Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So, C. H., & Kang, J. (2020). BioBERT: A Pre-Trained Biomedical Language Representation Model for Biomedical Text Mining. Bioinformatics (Oxford, England), 36 (4), 1234–1240. doi:10.1093/bioinformatics/btz682 CR - Liao, H. (2025). Deepseek Large-Scale Model: Technical Analysis and Development Prospect. Journal of Computer Science and Electrical Engineering, 7 (1). doi:10.61784/jcsee3035 CR - Lin, X. (2020). Sentiment Analysis of E-Commerce Customer Reviews Based on Natural Language Processing. In ISBDAI ’20: 2020 2nd International Conference on Big Data and Artificial Intelligence (pp. 32-36). Association for Computing Machinery. doi:10.1145/3436286.3436293 CR - Liu, T., Hu, Y., Chen, P., Sun, Y., & Yin, B. (2023). Zero-Shot Text Classification with Semantically Extended Textual Entailment. In 2023 International Joint Conference on Neural Networks (IJCNN). IEEE. doi:10.1109/ijcnn54540.2023.10191094 CR - Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Omer Levy, Lewis, M., Zettlemoyer, L., & Stoyanov, V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. ArXiv. doi:10.48550/ARXIV.1907.11692 CR - Lohse, T. M. & Kemper, J. (2019). Online customer reviews as driver of customer loyalty. In Fortieth International Conference on Information Systems, Munich, Germany. https://aisel.aisnet.org/icis2019/business_models/business_models/3 CR - Manias, G., Mavrogiorgou, A., Kiourtis, A., Symvoulidis, C., & Kyriazis, D. (2023). Multilingual Text Categorization and Sentiment Analysis: A Comparative Analysis of The Utilization of Multilingual Approaches for Classifying Twitter Data. Neural Computing and Applications, 35 (29), 21415–21431. doi:10.1007/s00521-023-08629-3 CR - Martina Jose Mary, M., Devi, S. R., Yogeshkannah, K., Prem, S., Pooranachandiran, G., & Viyash, V. (2024). Multilingual Sentiment Analysis for Youtube Educational Videos Using NLP And Machine Learning Approaches. In 2024 Third International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). IEEE. doi:10.1109/icstsn61422.2024.10671276 CR - Masarifoglu, M., Tigrak, U., Hakyemez, S., Gul, G., Bozan, E., Buyuklu, A. H., & Özgür, A. (2021). Sentiment Analysis of Customer Comments in Banking Using BERT-Based Approaches. In 2021 29th Signal Processing and Communications Applications Conference (SIU). IEEE. doi:10.1109/siu53274.2021.9477890 CR - Masood, M. A., Abbasi, R. A., & Wee Keong, N. (2020). Context-Aware Sliding Window for Sentiment Classification. IEEE Access: Practical Innovations, Open Solutions, 8, 4870–4884. doi:10.1109/access.2019.2963586 CR - Matarazzo, A., & Torlone, R. (2025). A Survey on Large Language Models with some Insights on their Capabilities and Limitations. ArXiv. doi:10.48550/ARXIV.2501.04040 CR - Mickus, T., Paperno, D., Constant, M., & van Deemter, K. (2020). What Do You Mean, BERT? Assessing BERT as a Distributional Semantics Model. Society for Computation in Linguistics, 3 (1), 350-361. doi: doi:10.7275/t778-ja71 CR - Mingo, H. (2024). Enhancing Sentiment Analysis with Logistic Regression and NLP: A Case Study Of 2023 Amazon Software Reviews. In 2024 International Symposium on Networks, Computers and Communications (ISNCC). IEEE. doi:10.1109/isncc62547.2024.10759007 CR - Mostafa, M., & AlSaeed, A. (2022). Sentiment Analysis Based on Bert for Amazon Reviewer. Journal of the ACS Advances in Computer Science, 13 (1), 1–10. doi:10.21608/asc.2023.171559.1007 CR - Murad, I. A., Khaleel, M. I., & Shakor, M. Y. (2024). Unveiling GPT-4o: Enhanced Multimodal Capabilities and Comparative Insights with ChatGPT-4. International Journal of Electronics and Communications Systems, 4 (2), 127. doi:10.24042/ijecs.v4i2.25079 CR - Nazar, S. R., & Bhattasali, T. (2021). Sentiment Analysis of Customer Reviews. Azerbaijan Journal of High Performance Computing, 4 (1), 113–125. doi:10.32010/26166127.2021.4.1.113.125 CR - Nicholls, C. & Song, F. (2010). Comparison of Feature Selection Methods for Sentiment Analysis. In A. Farzindar, & V. Kešelj (Eds.), Advances in Artificial Intelligence. Canadian AI 2010. Lecture Notes in Computer Science vol 6085 (pp. 286-289). Springer. doi:10.1007/978-3-642-13059-5_30 CR - OpenAI (n.d.). GPT-4o. Open AI. https://platform.openai.com/docs/models/gpt-4o (May 8, 2025) CR - Orea-Giner, A., Fuentes-Moraleda, L., Villacé-Molinero, T., Muñoz-Mazón, A., & Calero-Sanz, J. (2022). Does The Implementation of Robots in Hotels Influence the Overall Tripadvisor Rating? A Text Mining Analysis from the Industry 5.0 Approach. Tourism Management, 93 (104586), 104586. doi:10.1016/j.tourman.2022.104586 CR - Panduro-Ramirez, J. (2024). Sentiment Analysis in Customer Reviews for Product Recommendation in E-Commerce Using Machine Learning. In 2024 International Conference on Advances in Computing, Communication and Applied Informatics (ACCAI). IEEE. doi:10.1109/accai61061.2024.10602027 CR - Patra, G. K. (2023). A Sentiment Analysis of Customer Product Review Based on Machine Learning Techniques in E-Commerce. Journal of Artificial Intelligence & Cloud Computing, 2 (4), 1–4. doi:10.47363/jaicc/2023(2)389 CR - Phoenix, J., & Taylor, M. (2024). Prompt Engineering for Generative AI. Sebastopol, CA: O’Reilly Media. CR - Pocchiari, M., Proserpio, D., & Dover, Y. (2024). Online Reviews: A Literature Review and Roadmap for Future Research. International Journal of Research in Marketing, Article in Press. doi:10.1016/j.ijresmar.2024.08.009 CR - Polatgil, M. (2024). Togg Otomobilleri Youtube Video Yorumlarının Duygu Analizi ve Makine Öğrenme Modeli ile İncelenmesi. Uluslararası Anadolu Sosyal Bilimler Dergisi, 8 (1), 15-35. doi:10.47525/ulasbid.1398206 CR - Pourpanah, F., Abdar, M., Luo, Y., Zhou, X., Wang, R., Lim, C. P., Wang, X-Z., & Wu, Q. M. J. (2023). A Review of Generalized Zero-Shot Learning Methods. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45 (4), 4051–4070. doi:10.1109/TPAMI.2022.3191696 CR - Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language Models Are Unsupervised Multitask Learners. OpenAI Blog. https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf (April 17, 2025). CR - Rajalakshmi, S., Asha, S., & Pazhaniraja, N. (2017). A Comprehensive Survey on Sentiment Analysis. In 2017 Fourth International Conference on Signal Processing, Communication and Networking (ICSCN). IEEE. doi:10.1109/icscn.2017.8085673 CR - Revathi, K. L., Satish, A. R., & Rao, P. S. (2023). Fine - Grained Sentiment Analysis on Online Reviews. In 2023 Third International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT). IEEE. doi:10.1109/ICAECT57570.2023.10118291 CR - Roumeliotis, K. I., Tselikas, N. D., & Nasiopoulos, D. K. (2024). Leveraging Large Language Models in Tourism: A Comparative Study of the Latest GPT Omni Models and BERT NLP for Customer Review Classification and Sentiment Analysis. Information, 15 (12), 792. doi:10.3390/info15120792 CR - Ruiz-Millán, J. A., Martínez-Cámara, E., Victoria Luzón, M., & Herrera, F. (2022). Personalised federated learning with BERT fine tuning. Case study on Twitter sentiment analysis. In L., Troiano, A., Vaccaro, R., Tagliaferri, N., Kesswani, I. D., Rodriguez, I. Brigui, & D. Parente (Eds.), Advances in Deep Learning, Artificial Intelligence and Robotics. Lecture Notes in Networks and Systems, vol 249 (pp. 193–202). Springer. doi:10.1007/978-3-030-85365-5_19 CR - Sabharwal, N., & Agrawal, A. (2021). Future of BERT Models. Navin Sabharwal, & Amit Agrawal (Eds.), Hands-on Question Answering Systems with BERT. Apress: Berkeley, 173–178. doi:10.1007/978-1-4842-6664-9_7 CR - Sabiri, B., Khtira, A., El Asri, B., & Rhanoui, M. (2023). Analyzing BERT’s performance compared to traditional text classification models. In J. Filipe, M. Śmiałek, A. Brodsky, & S. Hammoudi (Eds.), Proceedings of the 25th International Conference on Enterprise Information Systems (pp. 572–582). SciTePress. doi:10.5220/0011983100003467 CR - Sanh, V., Debut, L., Chaumond, J., & Wolf, T. (2019). DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter. ArXiv. doi:10.48550/ARXIV.1910.01108 CR - Saragih, H., & Manurung, J. (2024). Leveraging the BERT Model for Enhanced Sentiment Analysis in Multicontextual Social Media Content. Jurnal Teknik Informatika C.I.T Medicom, 16 (2), 82–89. doi:10.35335/cit.vol16.2024.766 CR - Sarma, S. (2023). Zero-Shot Learning for Computer Vision Applications. In MM ’23: The 31st ACM International Conference on Multimedia (pp. 9360–9364). Association for Computing Machinery. doi:10.1145/3581783.3613435 CR - Schweter, S. (2020). BERTurk - BERT models for Turkish (Version 1.0.0). Zenodo. doi:10.5281/ZENODO.3770924 CR - Shah, Z., & Rai, S. (2022). A Research Paper on the Effects of Customer Feedback on Business. International Journal of Advanced Research in Science, Communication and Technology, 672–675. doi:10.48175/ijarsct-5743 CR - Shen, Y., & Zhang, P. K. (2024). Financial Sentiment Analysis on News and Reports Using Large Language Models and FinBERT. In 2024 IEEE 6th International Conference on Power, Intelligent Computing and Systems (ICPICS) (pp. 717–721). IEEE. doi:10.1109/icpics62053.2024.10796670 CR - Shukla, D., & Dwivedi, S. K. (2024). The Study of the Effect of Preprocessing Techniques for Emotion Detection on Amazon Product Review Dataset. Social Network Analysis and Mining, 14 (1). doi:10.1007/s13278-024-01352-4 CR - Singh, A., Hasan, Z., & Paranjape, V. (2023). Analyzing Sentiment and Emotion in Omicron-Related Social Media Content: An NLP Perspective. International Journal of Innovative Research in Computer and Communication Engineering, 10 (01), 279–283. doi:10.15680/ijircce.2022.1001046 CR - Sree Harsha, S., Krishna Swaroop, K., & Chandavarkar, B. R. (2021). Natural Language Inference: Detecting Contradiction and Entailment in Multilingual Text. In K. R. Venugopal, P. D. Shenoy, R. Buyya, L. M. Patnaik, S. S. Iyengar (Eds.), Data Science and Computational Intelligence. ICInPro 2021. Communications in Computer and Information Science, vol 1483 (pp. 314-327) Springer. doi:10.1007/978-3-030-91244-4_25 CR - Stine, R. A. (2019). Sentiment Analysis. Annual Review of Statistics and Its Application, 6 (1), 287–308. doi:10.1146/annurev-statistics-030718-105242 CR - Swamy, T. N., Lakshmi, J. K., Uma, M. P., Reshma, D., & Jayanth, D. (2022). Multimedia Sentiment Analysis on Public Social Network Using NLP. International Journal for Research Trends and Innovation, 7 (8), 825-830. CR - Taherdoost, H., & Madanchian, M. (2023). Artificial Intelligence and Sentiment Analysis: A Review in Competitive Research. Computers, 12 (2), 37. doi:10.3390/computers12020037 CR - Tanuwijaya, C. K., Ellitan, L., & Lukito, R. S. H. (2023). The Effect of Online Customer Reviews on Purchase Intention with Customer Trust as a Variable in Purchase Decision on Sociolla Consumers. Journal of Entrepreneurship & Business, 4 (3), 192–203. doi:10.24123/jeb.v4i3.5764 CR - Teke, B., Yazıcı, S. N., Zamir, G., Budak, A. B., & Karabey Aksakallı, I. (2025). Berturk-Based Sentiment Analysis on E-Commerce Multi Domain Product Reviews. Afyon Kocatepe University Journal of Sciences and Engineering, 25 (3), 497–509. doi:10.35414/akufemubid.1537513 CR - Tsiligaridis, J. (2024). Approaches of classification models for Sentiment Analysis. In D. C. Wyld & D. Nagamalai (Eds.), 5th International Conference on Advanced Natural Language Processing (pp. 81-86). Computer Science & Information Technology (CS & IT). doi:10.5121/csit.2024.141007 CR - Tuzcu, S. (2020). Çevrimiçi Kullanıcı Yorumlarının Duygu Analizi ile Sınıflandırılması. ESTUDAM Bilişim Dergisi, 1 (2), 1–5. CR - Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., Polosukhin, I. (2017). Attention Is All You Need. ArXiv. doi:10.48550/ARXIV.1706.03762 CR - Viet, N. V., & Vinh, N. T. (2024). Large Language Models in Software Engineering. Journal of Education for Sustainable Innovation, 2 (2), 146–156. doi:10.56916/jesi.v2i2.968 CR - Weidinger, L., Mellor, J., Rauh, M., Griffin, C., Uesato, J., Huang, P.-S., ... Gabriel, I. (2021). Ethical and Social Risks of Harm from Language Models. ArXiv. doi:10.48550/ARXIV.2112.04359 CR - Willemsen, L. M., Neijens, P. C., & Bronner, F. (2012). The Ironic Effect of Source Identification on the Perceived Credibility of Online Product Reviewers. Journal of Computer-Mediated Communication: JCMC, 18 (1), 16–31. doi:10.1111/j.1083-6101.2012.01598.x CR - Wirtz, J., & Tomlin, M. (2000). Institutionalising Customer‐Driven Learning Through Fully Integrated Customer Feedback Systems. Managing Service Quality, 10 (4), 205–215. doi:10.1108/09604520010341654 CR - Wirtz, J., Kuan Tambyah, S., & Mattila, A. S. (2010). Organizational Learning from Customer Feedback Received by Service Employees. Journal of Service Management, 21 (3), 363–387. doi:10.1108/09564231011050814 CR - Xue, Q. (2024). Unlocking The Potential: A Comprehensive Exploration of Large Language Models in Natural Language Processing. Applied and Computational Engineering, 57 (1), 247–252. doi:10.54254/2755-2721/57/20241341 CR - Yang, L., Charoenporn, T., & Sornlertlamvanich, V. (2024). Comparative Study of Traditional Machine Learning and Quantum Computing in Natural Language Processing: A Case Study on Sentiment Analysis. In 2024 IEEE International Symposium on Consumer Technology (ISCT) (pp. 269–273). doi:10.1109/isct62336.2024.10791272 CR - Yildirim, S. (2024). Fine-Tuning Transformer-Based Encoder for Turkish Language Understanding Tasks. ArXiv. doi:10.48550/ARXIV.2401.17396 CR - Zhang, C., Fan, C., Yao, W., Hu, X., & Mostafavi, A. (2019). Social Media for Intelligent Public Information and Warning in Disasters: An Interdisciplinary Review. International Journal of Information Management, 49, 190–207. doi:10.1016/j.ijinfomgt.2019.04.004 UR - https://doi.org/10.29157/etusbed.1711500 L1 - https://dergipark.org.tr/tr/download/article-file/4924751 ER -