TY - JOUR T1 - Are Large Language Models Rational or Behavioral? A Comparative Analysis of Investor Behavior Interpretation TT - Büyük Dil Modelleri Rasyonel mi, Davranışsal mı? Yatırımcı Davranışlarına Dair Karşılaştırmalı Bir Analiz AU - Şahin, Özkan PY - 2025 DA - October Y2 - 2025 DO - 10.29130/dubited.1711955 JF - Duzce University Journal of Science and Technology JO - DÜBİTED PB - Düzce Üniversitesi WT - DergiPark SN - 2148-2446 SP - 1556 EP - 1582 VL - 13 IS - 4 LA - en AB - This study aims to evaluate the ability of Large Language Model (LLM)-based AI applications to understand and interpret the fundamental theories of behavioral finance. In this context, the responses of five current LLM applications (ChatGPT 4o, Deepseek, Gemini 2.0 Flash, QwenChat 2.5 Max, and Copilot) were comparatively analyzed based on ten distinct scenarios involving behavioral biases and investment decision-making. The findings reveal how each model responds to behavioral concepts such as conceptual depth, psychological insight, strategic recommendation level, and originality. The results indicate that while the applications demonstrate successful analyses in certain cases, they also differ significantly in terms of data source diversity, contextual sensitivity, and algorithmic approaches. In particular, notable discrepancies were observed in explainability, consistency, and theory-based interpretive capacity. Ultimately, the study concludes that LLM systems have the potential to assess investment decisions not only through a rational framework but also from a behavioral perspective. Accordingly, the research provides both theoretical and practical contributions to the development of AI-based financial decision support systems. KW - Behavioral Finance KW - Large Language Models (LLMs) KW - Financial Decision-Making KW - Generative Artificial Intelligence N2 - Bu çalışmada, farklı büyük dil modeli (Large Language Model-LLM) tabanlı yapay zekâ uygulamalarının davranışsal finans teorilerini anlama ve yatırımcı psikolojisi senaryolarını yorumlama kapasiteleri analiz edilmiştir. Analize dahil edilen beş uygulama (ChatGPT 4o, Deepseek, Gemini 2.0 Flash, QwenChat 2.5 Max, ve Copilot), 10 özgün senaryo üzerinden değerlendirilmiştir. Araştırma ile, LLM’lerin finansal karar alma süreçlerini anlamlandırmada rasyonel yatırımcı modelinin ötesine geçip geçemediğini ve davranışsal finans ilkelerine yönelik içgörüler sağlayıp sağlayamadığını ortaya koymak hedeflenmiştir. Sonuçlar, uygulamaların belirli durumlarda başarılı analizler sunduğunu, ancak veri kaynaklarının çeşitliliği, bağlamsal duyarlılık ve algoritmik yaklaşımlar açısından önemli farklılıklar gösterdiğini ortaya koymuştur. Ayrıca, yapay zekâların yatırımcı davranışlarına yönelik yorumlamalarında tutarlılık ve açıklanabilirlik açısından bazı sınırlamalar gözlemlenmiştir. Sonuç olarak, LLM tabanlı sistemlerin davranışsal finans yaklaşımlarını daha etkili bir şekilde benimseyebilmeleri için geliştirme süreçlerinde etik ilkeler, uzman katkısı ve veri kalitesine daha fazla odaklanılması gerekmektedir. CR - Ariely, D., & Berns, G. S. (2010). Neuromarketing: the hope and hype of neuroimaging in business. Nature Reviews Neuroscience, 11(4), 284-292. https://doi.org/10.1038/nrn2795 CR - Barberis, N., & Thaler, R. (2003). A survey of behavioral finance. In G. M. Constantinides, M. Harris, & R. M. Stulz (Eds.), Handbook of the Economics of Finance, Volume 1A Corporate Finance, , (1st ed., pp. 1053–1128.) Elsevier. https://doi.org/10.1016/S1574-0102(03)01027-6 CR - Bender, E. M., Gebru, T., McMillan-Major, A., & Shmitchell, S. (2021, March). On the dangers of stochastic parrots: Can language models be too big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (pp. 610-623). https://doi.org/10.1145/3442188.3445922 CR - Bommasani, R., Hudson, D. A., Adeli, E., Altman, R., Arora, S., Arx, S., Bernstein, M. S., Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S., Card, D., Castellon, R., Chatterji, N., Chen, A., Creel, K., Davis, J. Q., Demszky, D., … Liang, P. (2021). On the opportunities and risks of foundation models. arXiv preprint. https://doi.org/10.48550/arXiv.2108.07258 CR - Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., … Amodei, D. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901. https://doi.org/10.48550/arXiv.2005.14165 CR - Bubeck, S., Chandrasekaran, V., Eldan, R., Gehrke, J., Horvitz, E., Kamar, E., Lee, P., Lee, Y. T., Li, Y., Lundberg, S., Nori, H., Palangi, H., Ribeiro, M. T. & Zhang, Y. (2023). Sparks of artificial general intelligence: Early experiments with GPT-4. arXiv preprint. https://doi.org/10.48550/arXiv.2303.12712 CR - Chen, M., Tworek, J., Jun, H., Yuan, Q., Pinto, H. P. O., Kaplan, J., Edwards, H., Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger, G., Petrov, M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder, … Zaremba, W. (2021). Evaluating large language models trained on code. arXiv preprint. https://doi.org/10.48550/arXiv.2107.03374 CR - Chomsky, N. (1959). Syntactic structures. Mouton & Co. CR - Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, June). Bert: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, (Vol. 1, Long and Short Papers) (pp. 4171–4186). Association for Computational Linguistics. https://doi.org/10.48550/arXiv.1810.04805 CR - Floridi, L., & Cowls, J. (2022). A unified framework of five principles for AI in society. In R. Stouffs, S. Roudavski, & B. Davis (Eds.), Machine Learning and the City: Applications in Architecture and Urban Design (pp. 149–164). Springer. https://doi.org/10.1002/9781119815075.ch45 CR - Howard, J., & Ruder, S. (2018). Universal language model fine-tuning for text classification. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (pp. 328–339). Association for Computational Linguistics. https://doi.org/10.18653/v1/P18-1031 CR - Jurafsky, D., & Martin, J. H. (2009). Speech and Language Processing (2nd ed.). Prentice Hall. Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291. https://doi.org/10.2307/1914185 CR - Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford, A., Wu, J. & Amodei, D. (2020). Scaling laws for neural language models. arXiv preprint. https://doi.org/10.48550/arXiv.2001.08361 CR - Kwiatkowski, T., Palomaki, J., Redfield, O., Collins, M., Parikh, A., Alberti, C., Epstein, D., Polosukhin, I., Devlin, J., Lee, K., Toutanova, K., Jones, L., Kelcey, M., Chang, M. W., Dai, A. M., Uszkoreit, J., Le, Q. & Petrov, S. (2019). Natural questions: A benchmark for question answering research. Transactions of the Association for Computational Linguistics, 7, 453-466. https://doi.org/10.1162/tacl_a_00276 CR - Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue, 16(3), 31-57. https://doi.org/10.1145/3233231 CR - Liu, Y., Gu, J., Goyal, N., Li, X., Edunov, S., Ghazvininejad, M., Lewis, M. & Zettlemoyer, L. (2020). Multilingual denoising pre-training for neural machine translation. Transactions of the Association for Computational Linguistics, 8, 726-742. https://doi.org/10.48550/arXiv.2001.08210 CR - Loewenstein, G. F., Weber, E. U., Hsee, C. K., & Welch, N. (2001). Risk as feelings. Psychological Bulletin, 127(2), 267-286. https://doi.org/10.1037/0033-2909.127.2.267 CR - Maynez, J., Narayan, S., Bohnet, B., & McDonald, R. (2020). On faithfulness and factuality in abstractive summarization. arXiv preprint. https://doi.org/10.48550/arXiv.2005.00661 CR - Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training [Technical report]. OpenAI. https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf CR - Shefrin, H., & Statman, M. (1985). The disposition to sell winners too early and ride losers too long: Theory and evidence. The Journal of Finance, 40(3), 777-790. https://doi.org/10.2307/2327802 CR - Strubell, E., Ganesh, A., & McCallum, A. (2020, April). Energy and policy considerations for modern deep learning research. Proceedings of the AAAI Conference on Artificial Intelligence, 34(9), 13693-13696. https://doi.org/10.48550/arXiv.1906.02243 CR - Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. & Polosukhin, I. (2017). Attention is all you need. Advances in Neural Information Processing Systems, 30, 5998–6008. https://doi.org/10.48550/arXiv.1706.03762 CR - Zhou, Y., Ni, Y., Gan, Y., Yin, Z., Liu, X., Zhang, J., Liu, S., Qiu, X., Ye, G. & Chai, H. (2024). Are LLMS rational investors? A study on detecting and reducing the financial bias in LLMs. arXiv preprint. https://doi.org/10.48550/arXiv.2402.12713 UR - https://doi.org/10.29130/dubited.1711955 L1 - https://dergipark.org.tr/tr/download/article-file/4926763 ER -