TY - JOUR T1 - Comparative evaluation of base catalysts in biodiesel production from waste frying oil TT - Biyodizel üretimi, baz katalizörler, atık kızartma yağı, transesterifikasyon, proses optimizasyonu AU - Söyler, Hüseyin PY - 2025 DA - September Y2 - 2025 DO - 10.18245/ijaet.1713346 JF - International Journal of Automotive Engineering and Technologies PB - Murat CİNİVİZ WT - DergiPark SN - 2146-9067 SP - 142 EP - 153 VL - 14 IS - 3 LA - en AB - The urgent need for alternative fuels has propelled biodiesel research into the spotlight, particularly focusing on cost-effective and sustainable feedstocks such as waste frying oil. This study investigates the technical and practical impact of four different base catalysts (NaOH, KOH, K₂CO₃, and Ca(OCH₃)₂) on the transesterification efficiency of waste frying oil. Experimental trials were systematically conducted by altering catalyst concentration and methanol-to-oil molar ratios to determine optimal production conditions. Statistical analyses confirmed that all process parameters had a significant impact on the biodiesel yield. Technically, NaOH and KOH yielded the highest conversion rates, while K₂CO₃ showed markedly lower performance. The study supports the process's cost-effective goal by demonstrating that NaOH and KOH, which provided the highest yields, are also the most economical and practical options due to their low cost and industrial availability. The developed multiple linear regression model affirmed the collective influence of the examined parameters with a strong predictive capability (R² = 0.933). Ultimately, this work highlights both the technical superiority and economic practicality of strong bases, particularly NaOH and KOH, for efficient biodiesel synthesis from waste frying oil, contributing to optimized processes that support the transition to greener energy alternatives. KW - Biodiesel production KW - base catalysts KW - waste frying oil KW - transesterification KW - process optimization N2 - Alternatif yakıtlara olan acil ihtiyaç, biyodizel araştırmalarını ön plana çıkarmış ve özellikle atık kızartma yağı gibi maliyet etkin ve sürdürülebilir hammaddelere odaklanılmasına neden olmuştur. Bu çalışma, NaOH, KOH, K₂CO₃ ve Ca(OCH₃)₂ gibi çeşitli homojen baz katalizörlerin atık kızartma yağı ile gerçekleştirilen transesterifikasyon verimliliği üzerindeki etkisini incelemektedir. Deneysel çalışmalar, katalizör konsantrasyonu ve metanol/yağ mol oranı değiştirilerek sistematik olarak yürütülmüş ve optimum üretim koşulları belirlenmiştir. Tek yönlü ANOVA ve Tukey HSD çoklu karşılaştırma testi gibi istatistiksel analizler, süreç parametrelerinin biyodizel dönüşüm verimi üzerinde anlamlı etkiler yarattığını doğrulamıştır. Test edilen katalizörler arasında, NaOH ve KOH en yüksek dönüşüm oranlarını sağlarken, K₂CO₃ belirgin şekilde daha düşük performans göstermiştir. Ayrıca, yüksek düzeyde açıklayıcılığa sahip (R² = 0.954) bir çoklu doğrusal regresyon modeli geliştirilmiş ve parametrelerin birlikte etkili olduğunu ortaya koymuştur. Parametre etkileşimlerini görselleştirmek amacıyla oluşturulan yüzey grafiklerinde, maksimum verim bölgeleri belirlenmiş ve özellikle katalizör yüklemesi ile metanol oranı arasındaki sinerjik etkileşimler vurgulanmıştır. Elde edilen sonuçlar, özellikle NaOH ve KOH gibi homojen katalizörlerin atık kızartma yağından verimli biyodizel üretimi için uygulanabilirliğini ortaya koymakta ve biyodizel üretim süreçlerinin optimizasyonuna katkı sağlayarak daha yeşil enerji alternatiflerine geçişi desteklemektedir. CR - Rial, R.C., Biofuels versus climate change: Exploring potentials and challenges in the energy transition. Renew, Sustain, Energy Rev, 196, 114369, 2024. https://doi.org/10.1016/j.rser.2024.114369 CR - Lopresto, C.G., Sustainable biodiesel production from waste cooking oils for energetically independent small communities: an overview, Int. J. Environ Sci Technol, 22, 1953–1974, 2025. https://doi.org/10.1007/s13762-024-05779-2 CR - Balki, M.K., Biodiesel production from waste frying oil by electrochemical method using stainless steel electrode. Int. J. Automot. Eng. Technol, 13, 54–62, 2024. https://doi.org/10.18245/ijaet.1440793 CR - Ali Ijaz Malik, M., Zeeshan, S., Khubaib, M., Ikram, A., Hussain, F., Yassin, H., Qazi, A., A review of major trends, opportunities, and technical challenges in biodiesel production from waste sources. Energy Convers. Manag. X. 23, 100675, 2024. https://doi.org/10.1016/j.ecmx.2024.100675 CR - Liu, Y., Cruz-Morales, P., Zargar, A., Belcher, M.S., Pang, B., Englund, E., Dan, Q., Yin, K., Keasling, J.D., Biofuels for a sustainable future. Cell. 184, 1636–1647, 2021. https://doi.org/10.1016/j.cell.2021.01.052 CR - Mandal, Bi., Palit, S., Chowdhuri, A.K., Mandal, B.K., Environmental impact of using biodiesel as fuel in transportation: a review. Int. J. Glob. Warm. 3, 232, 2011. https://doi.org/10.1504/IJGW.2011.043421 CR - Suhara, A., Karyadi, Herawan, S.G., Tirta, A., Idris, M., Roslan, M.F., Putra, N.R., Hananto, A.L., Veza, I., Biodiesel Sustainability: Review of Progress and Challenges of Biodiesel as Sustainable Biofuel. Clean Technol. 6, 886–906, 2024. https://doi.org/10.3390/cleantechnol6030045 CR - Luque, R., Lovett, J.C., Datta, B., Clancy, J., Campelo, J.M., Romero, A.A., Biodiesel as feasible petrol fuel replacement: a multidisciplinary overview. Energy Environ. Sci. 3, 1706, 2010. https://doi.org/10.1039/c0ee00085j CR - Mishra, V.K., Goswami, R., A review of production, properties and advantages of biodiesel. Biofuels. 9, 273–289, 2018. https://doi.org/10.1080/17597269.2017.1336350 CR - Sabudak, T., Yildiz, M., Biodiesel production from waste frying oils and its quality control. Waste Manag. 30, 799–803, 2010. https://doi.org/10.1016/j.wasman.2010.01.007 CR - Linganiso, E.C., Tlhaole, B., Magagula, L.P., Dziike, S., Linganiso, L.Z., Motaung, T.E., Moloto, N., Tetana, Z.N., Biodiesel Production from Waste Oils: A South African Outlook. Sustainability. 14, 1983, 2022. https://doi.org/10.3390/su14041983 CR - Encinar, J.M., González, J.F., Martínez, G., Nogales-Delgado, S., Transesterification of Soybean Oil through Different Homogeneous Catalysts: Kinetic Study. Catalysts. 12, 146, 2022. https://doi.org/10.3390/catal12020146 CR - Cercado, A.P., Ballesteros, F.J., Capareda, S., Biodiesel from Three Microalgae Transesterification Processes using Different Homogenous Catalysts. Int. J. Technol. 9, 645, 2018. https://doi.org/10.14716/ijtech.v9i4.1145 CR - Jamil, F., Al-Haj, L., Al-Muhtaseb, A.H., Al-Hinai, M.A., Baawain, M., Rashid, U., Ahmad, M.N.M., Current scenario of catalysts for biodiesel production: a critical review. Rev. Chem. Eng. 34, 267–297, 2018. https://doi.org/10.1515/revce-2016-0026 CR - Mendow, G., Veizaga, N.S., Querini, C.A., Ethyl ester production by homogeneous alkaline transesterification: Influence of the catalyst. Bioresour. Technol. 102, 6385–6391, 2011. https://doi.org/10.1016/j.biortech.2011.01.072 CR - Balki, M.K., Determination of Optimum Operating Parameters in a Non-Road Diesel Engine Fueled with 1-Heptanol/Biodiesel at Different Injection Pressures and Advances. Energies. 17, 1588, 2024. https://doi.org/10.3390/en17071588 CR - Liu, C., Lu, Z., Duan, J., Dou, H., Cao, Z., Xu, X., Zhang, X., Chen, Z., Xiao, W., Transesterification of DMC with ethanol over K2CO3/Al2O3: The structure-performance relationship and catalytic mechanism. J. CO2 Util. 84, 102846, 2024. https://doi.org/10.1016/j.jcou.2024.102846 CR - Nyepetsi, M., Mbaiwa, F., Oyetunji, O.A., Dzade, N.Y., De Leeuw, N.H., The Carbonate-catalyzed Transesterification of Sunflower Oil for Biodiesel Production: in situ Monitoring and Density Functional Theory Calculations. South Afr. J. Chem. 74, 2021. https://doi.org/10.17159/0379-4350/2021/v74a8 CR - Thanh, L.T., Okitsu, K., Sadanaga, Y., Takenaka, N., Maeda, Y., Bandow, H., Ultrasound-assisted production of biodiesel fuel from vegetable oils in a small scale circulation process. Bioresour. Technol. 101, 639–645, 2010. https://doi.org/10.1016/j.biortech.2009.08.050 CR - Wahyono, Y., Hadiyanto, H., Budihardjo, M.A., Hariyono, Y., Baihaqi, R.A., Multifeedstock Biodiesel Production from a Blend of Five Oils through Transesterification with Variation of Moles Ratio of Oil: Methanol. Int. J. Technol. 13, 606, 2022. https://doi.org/10.14716/ijtech.v13i3.4804 CR - Wang, Y., Liu, J., Gerken, H., Zhang, C., Hu, Q., Li, Y., Highly-efficient enzymatic conversion of crude algal oils into biodiesel. Bioresour. Technol. 172, 143–149, 2014. https://doi.org/10.1016/j.biortech.2014.09.003 CR - Cercado, A.P., Ballesteros, F.J., Capareda, S., Biodiesel from Three Microalgae Transesterification Processes using Different Homogenous Catalysts. Int. J. Technol. 9, 645, 2018. https://doi.org/10.14716/ijtech.v9i4.1145 CR - Abusweireh, R.S., Rajamohan, N., Vasseghian, Y., Enhanced production of biodiesel using nanomaterials: A detailed review on the mechanism and influencing factors. Fuel. 319, 123862, 2022. https://doi.org/10.1016/j.fuel.2022.123862 CR - Thliveros, P., Uçkun Kiran, E., Webb, C., Microbial biodiesel production by direct methanolysis of oleaginous biomass. Bioresour. Technol. 157, 181–187, 2014. https://doi.org/10.1016/j.biortech.2014.01.111 CR - Demirtaş, G., Effect of injection timing on performance and emissions of a CRDI diesel engine using biodiesel-n-octanol blend fuel. Positive Science International, 1(1), 24-35, 2025. UR - https://doi.org/10.18245/ijaet.1713346 L1 - https://dergipark.org.tr/tr/download/article-file/4932581 ER -