TY - JOUR T1 - The Anti-leukemic Effect of the Inhibition of Spleen Tyrosine Kinase and Histone Deacetylase Enzyme Inhibition on the FLT3-ITD(+) Acute Myeloid Leukemia Cells TT - Dalak Tirozin Kinaz ve Histon Deasetilaz Enzim İnhibisyonunun FLT3-ITD(+) Akut Miyeloid Lösemi Hücreleri Üzerindeki Anti-lösemik Etkisi AU - Gencer Akcok, Emel Başak AU - Şansaçar, Merve PY - 2025 DA - August Y2 - 2025 JF - Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi PB - Erciyes Üniversitesi WT - DergiPark SN - 1012-2354 SP - 708 EP - 721 VL - 41 IS - 2 LA - en AB - Spleen Tyrosine Kinase (Syk) crosstalk with paramount signaling pathways which has a major contribution in the progress of acute myeloid leukemia (AML) such as PI3K, NFκB and JAK/STAT signaling pathways. Several studies recorded that deregulated Histone Deacetylase (HDAC) enzymes are involved in the pathogenesis of AML. The study aims to reveal the effect of Syk and HDAC co-inhibition on MOLM-13 and MV4-11 AML cells which are harboring the receptor of FMS-like Tyrosine Kinase's (FLT3) Internal Tandem Duplication (ITD). AML cells were incubated using both R406 and HDAC inhibitors alone and in combination, and increasing concentrations of R406 and HDAC inhibitors revealed a significant reduction of MOLM-13 and MV4-11 cells’ viability using MTT cell viability test. Furthermore, the combination of R406 and VPA resulted in a reduction in the proliferation of both cells correlated with the synergistic effect of the two drugs revealed by the combination index (CI). Moreover, investigating apoptosis for the combined administration of drugs resulted in induced apoptosis in AML cells using Annexin-V/PI double staining. We observed also changes in the mRNA expression level of MYC after combination treatment via Real-time PCR analysis. Even though further studies are needed, targeting Syk and HDAC enzymes in AML cells may be a good strategy in the treatment of patients suffering from AML with FLT3 ITD (+) mutation. KW - Leukemia KW - Spleen tyrosine kinase KW - Histone deacetylase enzymes KW - Combination therapy KW - R406 KW - HDAC inhibitors N2 - Öz: Dalak Tirozin Kinaz (Syk), akut miyeloid lösemi (AML) gelişiminde büyük katkısı vardır ve PI3K, NFκB ve JAK/STAT sinyal yolları gibi başlıca sinyal yolaklarıyla çapraz iletişim kurar. Birçok çalışma, bozuk Histon Deasetilaz (HDAC) enzimlerinin AML patogenezinde rol oynadığını kaydetmiştir. Çalışmanın amacı, Syk ve HDAC ko-inhibisyonunun, FMS benzeri tirozin kinaz reseptöründe (FLT3) İç Tandem Duplikasyonu (ITD) barındıran MOLM-13 ve MV4-11 AML hücreleri üzerindeki etkisini ortaya koymaktır. AML hücreleri hem R406 hem de HDAC inhibitörleri ile tek başına ve kombinasyon halinde inkübe edildi ve inhibitörlerinin artan konsantrasyonlarının, MTT hücre canlılığı testi ile MOLM-13 ve MV4-11 hücrelerinin çoğalmasında önemli bir azalma olduğu ortaya konuldu. Ayrıca, R406 ve VPA kombinasyonu, kombinasyon indeksi (CI) tarafından ortaya çıkarılan iki ilacın sinerjistik etkisiyle ilişkili olarak her iki hücrenin proliferasyonunda bir azalmaya neden oldu. Ayrıca, Annexin-V/PI çift boyama yöntemi kombinasyon çalışmasının AML hücrelerinde apoptozu indüklekledini gösterdi. Ayrıca, Gerçek zamanlı PCR analizi ile kombinasyon tedavisinden sonra MYC'nin mRNA ekspresyon seviyesinde değişiklikler gözlendi. Daha fazla çalışmaya ihtiyaç duyulmasına rağmen, AML hücrelerinde Syk ve HDAC enzimlerini hedeflemek, FLT3 ITD (+) mutasyonu olan AML hastalarının tedavisinde yeni bir strateji olabilir. CR - Heidel, F.H., Arreba-Tutusaus, P., Armstrong, S.A., Fischer, T. 2015. Evolutionarily conserved signaling pathways: Acting in the shadows of acute myelogenous leukemia’s genetic diversity, Clinical Cancer Research, 21, 240–248. CR - Rubnitz, J.E., Gibson, B., Smith, F.O. 2008. Acute Myeloid Leukemia, Pediatr Clin North Am, 55, 21–51. CR - Wang, A., Hu, C., Chen, C., Liang, X., Wang, B., Zou, F., Yu, K., Li, F., Liu, Q., Qi, Z., Wang, J., Wang, W., Wang, L., Weisberg, E.L., Wang, W., Li, L., Ge, J., Xia, R., Liu, J., Liu, Q. 2020. Selectively targeting FLT3-ITD mutants over FLT3-wt by a novel inhibitor for acute myeloid leukemia, Haematologica, 106, 605–609. CR - Bartaula-Brevik, S., Lindstad Brattås, M.K., Tvedt, T.H.A., Reikvam, H., Bruserud, Ø. 2018. Splenic tyrosine kinase (SYK) inhibitors and their possible use in acute myeloid leukemia, Expert Opin Investig Drugs, 27, 377–387. CR - Mócsai, A., Ruland, J., Tybulewicz, V.L.J. 2010. The SYK tyrosine kinase: a crucial player in diverse biological functions, Nat Rev Immunol, 10, 387–402. CR - Puissant, A., Fenouille, N., Alexe, G., Pikman, Y., Bassil, C.F., Mehta, S., Du, J., Kazi, J.U., Luciano, F., Rönnstrand, L., Kung, A.L., Aster, J.C., Galinsky, I., Stone, R.M., DeAngelo, D.J., Hemann, M.T., Stegmaier, K. 2014. SYK Is a Critical Regulator of FLT3 in Acute Myeloid Leukemia, Cancer Cell, 25, 226–242. CR - Li, Y., Seto, E. 2016. HDACs and HDAC inhibitors in cancer development and therapy, Cold Spring Harb Perspect Med, 6. CR - San José-Enériz, Gimenez-Camino, Agirre, Prosper. 2019. HDAC Inhibitors in Acute Myeloid Leukemia, Cancers (Basel), 11, 1794. CR - Spreafico, M., Gruszka, A.M., Valli, D., Mazzola, M., Deflorian, G., Quintè, A., Totaro, M.G., Battaglia, C., Alcalay, M., Marozzi, A., Pistocchi, A. 2020. HDAC8: A Promising Therapeutic Target for Acute Myeloid Leukemia, Front Cell Dev Biol, 8. CR - Qi, J., Singh, S., Hua, W.K., Cai, Q., Chao, S.W., Li, L., Liu, H., Ho, Y., McDonald, T., Lin, A., Marcucci, G., Bhatia, R., Huang, W.J., Chang, C.I., Kuo, Y.H. 2015. HDAC8 Inhibition Specifically Targets Inv(16) Acute Myeloid Leukemic Stem Cells by Restoring p53 Acetylation, Cell Stem Cell, 17, 597–610. CR - Ho, T.C.S., Chan, A.H.Y., Ganesan, A. 2020. Thirty Years of HDAC Inhibitors: 2020 Insight and Hindsight., J Med Chem, 63, 12460–12484. CR - Breemen, M.S.M., Rijsman, R.M., Taphoorn, M.J.B., Walchenbach, R., Zwinkels, H., Vecht, C.J. 2009. Efficacy of anti-epileptic drugs in patients with gliomas and seizures, J Neurol, 256, 1519–1526. CR - Han, W., Guan, W. 2021. Valproic Acid: A Promising Therapeutic Agent in Glioma Treatment, Front Oncol, 11. CR - Duenas-Gonzalez, A., Candelaria, M., Perez-Plascencia, C., Perez-Cardenas, E., de la Cruz-Hernandez, E., Herrera, L.A. 2008. Valproic acid as epigenetic cancer drug: Preclinical, clinical and transcriptional effects on solid tumors, Cancer Treat Rev, 34, 206–222. CR - Chen, J.-H., Zheng, Y.-L., Xu, C.-Q., Gu, L.-Z., Ding, Z.-L., Qin, L., Wang, Y., Fu, R., Wan, Y.-F., Hu, C.-P. 2017. Valproic acid (VPA) enhances cisplatin sensitivity of non-small cell lung cancer cells via HDAC2 mediated down regulation of ABCA1, Biol Chem, 398, 785–792. CR - Wen, J., Chen, Y., Yang, J., Dai, C., Yu, S., Zhong, W., Liu, L., He, C., Zhang, W., Yang, T., Liu, L., Hu, J. 2023. Valproic acid increases CAR T cell cytotoxicity against acute myeloid leukemia, J Immunother Cancer, 11, e006857. CR - Skavland, J., Jørgensen, K.M., Hadziavdic, K., Hovland, R., Jonassen, I., Bruserud, Ø., Gjertsen, B.T. 2011. Specific cellular signal-transduction responses to in vivo combination therapy with ATRA, valproic acid and theophylline in acute myeloid leukemia, Blood Cancer J, 1, e4–e4. CR - Tassara, M., Döhner, K., Brossart, P., Held, G., Götze, K., Horst, H.-A., Ringhoffer, M., Köhne, C.-H., Kremers, S., Raghavachar, A., Wulf, G., Kirchen, H., Nachbaur, D., Derigs, H.G., Wattad, M., Koller, E., Brugger, W., Matzdorff, A., Greil, R., Heil, G., Paschka, P., Gaidzik, V.I., Göttlicher, M., Döhner, H., Schlenk, R.F. 2014. Valproic acid in combination with all-trans retinoic acid and intensive therapy for acute myeloid leukemia in older patients, Blood, 123, 4027–4036. CR - Wieduwilt, M.J., Pawlowska, N., Thomas, S., Olin, R., Logan, A.C., Damon, L.E., Martin, T., Kang, M., Sayre, P.H., Boyer, W., Gaensler, K.M.L., Anderson, K., Munster, P.N., Andreadis, C. 2019. Histone Deacetylase Inhibition with Panobinostat Combined with Intensive Induction Chemotherapy in Older Patients with Acute Myeloid Leukemia: Phase I Study Results, Clinical Cancer Research, 25, 4917–4923. CR - Morabito, F., Voso, M.T., Hohaus, S., Gentile, M., Vigna, E., Recchia, A.G., Iovino, L., Benedetti, E., Lo-Coco, F., Galimberti, S. 2016. Panobinostat for the treatment of acute myelogenous leukemia, Expert Opin Investig Drugs, 25, 1117–1131. CR - Lehner, K.M., Gopalakrishnapillai, A., Kolb, E.A., Barwe, S.P. 2023. Bone Marrow Microenvironment-Induced Chemoprotection in KMT2A Rearranged Pediatric AML Is Overcome by Azacitidine–Panobinostat Combination, Cancers (Basel), 15, 3112. CR - Şansaçar, M., Sağır, H., Gencer Akçok, E.B. 2023. Inhibition of PI3K-AKT-mTOR pathway and modulation of histone deacetylase enzymes reduce the growth of acute myeloid leukemia cells, Medical Oncology, 41, 31. CR - Chou, T.-C. 2010. Drug Combination Studies and Their Synergy Quantification Using the Chou-Talalay Method, Cancer Res, 70, 440–446. CR - Cooper, N., Ghanima, W., Hill, Q.A., Nicolson, P.L., Markovtsov, V., Kessler, C. 2023. Recent advances in understanding spleen tyrosine kinase (SYK) in human biology and disease, with a focus on fostamatinib, Platelets, 34. CR - Suraweera, A., O’Byrne, K.J., Richard, D.J. 2018. Combination Therapy With Histone Deacetylase Inhibitors (HDACi) for the Treatment of Cancer: Achieving the Full Therapeutic Potential of HDACi, Front Oncol, 8. CR - Brondfield, S., Umesh, S., Corella, A., Zuber, J., Rappaport, A.R., Gaillard, C., Lowe, S.W., Goga, A., Kogan, S.C. 2015. Direct and indirect targeting of MYC to treat acute myeloid leukemia, Cancer Chemother Pharmacol, 76, 35–46. CR - Ohanian, M., Rozovski, U., Kanagal-Shamanna, R., Abruzzo, L. V, Loghavi, S., Kadia, T., Futreal, A., Bhalla, K., Zuo, Z., Huh, Y.O., Post, S.M., Ruvolo, P., Garcia-Manero, G., Andreeff, M., Kornblau, S., Borthakur, G., Hu, P., Medeiros, L.J., Takahashi, K., Hornbaker, M.J., Zhang, J., Nogueras-González, G.M., Huang, X., Verstovsek, S., Estrov, Z., Pierce, S., Ravandi, F., Kantarjian, H.M., Bueso-Ramos, C.E., Cortes, J.E. 2019. MYC protein expression is an important prognostic factor in acute myeloid leukemia., Leuk Lymphoma, 60, 37–48. CR - Nix, N. M., Price, A. 2019. Acute Myeloid Leukemia: An Ever-Changing Disease, J Adv Pract Oncol, 10. CR - American Cancer Society. 2025. Key Statistics for Acute Myeloid Leukemia (AML). https://www.cancer.org/cancer/types/acute-myeloid-leukemia/about/key-statistics.html. (Erişim Tarihi: 09.05.2025). CR - Weisberg, E.L., Puissant, A., Stone, R., Sattler, M., Buhrlage, S.J., Yang, J., Manley, P.W., Meng, C., Buonopane, M., Daley, J.F., Lazo, S., Wright, R., Weinstock, D.M., Christie, A.L., Stegmaier, K., Griffin, J.D. 2017. Characterization of midostaurin as a dual inhibitor of FLT3 and SYK and potentiation of FLT3 inhibition against FLT3-ITD-driven leukemia harboring activated SYK kinase. Oncotarget. 8(32), 52026-52044. CR - Minucci, S., Nerv,i C., Lo Coco, F., Pelicci, P.G. 2001. Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias? Oncogene. 20(24), 3110-5. CR - Fredly, H., Gjertsen, B.T., Bruserud, O. 2013. Histone deacetylase inhibition in the treatment of acute myeloid leukemia: the effects of valproic acid on leukemic cells, and the clinical and experimental evidence for combining valproic acid with other antileukemic agents. Clin Epigenetics. 5(1), 12. CR - Leitch, C., Osdal, T., Andresen, V., Molland, M., Kristiansen, S., Nguyen, X.N., Bruserud, Ø., Gjertsen, B.T., McCormack, E. 2016. Hydroxyurea synergizes with valproic acid in wild-type p53 acute myeloid leukaemia., Oncotarget, 7, 8105–18. CR - Lehner, K.M., Gopalakrishnapillai, A., Kolb, E.A., Barwe, S.P. 2023. Bone Marrow Microenvironment-Induced Chemoprotection in KMT2A Rearranged Pediatric AML Is Overcome by Azacitidine-Panobinostat Combination., Cancers (Basel), 15. CR - Li, Y., Seto, E. 2016. HDACs and HDAC Inhibitors in Cancer Development and Therapy, Cold Spring Harb Perspect Med, 6, a026831. CR - Hege Hurrish, K., Qiao, X., Li, X., Su, Y., Carter, J., Ma, J., Kalpage, H.A., Hüttemann, M., Edwards, H., Wang, G., Kim, S., Dombkowski, A., Bao, X., Li, J., Taub, J.W., Ge, Y. 2022. Co-targeting of HDAC, PI3K, and Bcl-2 results in metabolic and transcriptional reprogramming and decreased mitochondrial function in acute myeloid leukemia, Biochem Pharmacol, 205, 115283. CR - Hahn, C.K., Berchuck, J.E., Ross, K.N., Kakoza, R.M., Clauser, K., Schinzel, A.C., Ross, L., Galinsky, I., Davis, T.N., Silver, S.J., Root, D.E., Stone, R.M., DeAngelo, D.J., Carroll, M., Hahn, W.C., Carr, S.A., Golub, T.R., Kung, A.L., Stegmaier, K. 2009. Proteomic and genetic approaches identify Syk as an AML target. Cancer Cell 16(4), 281-94. CR - Delgado, M.D., León, J. 2010. Myc roles in hematopoiesis and leukemia. Genes Cancer. 1(6), 605-16. CR - Cheng, Y. C., Lin, H., Huang, M. J., Chow, J. M., Lin, S., & Liu, H. E. 2007. Downregulation of c-Myc is critical for valproic acid-induced growth arrest and myeloid differentiation of acute myeloid leukemia. Leukemia research, 31(10), 1403–1411. CR - Köhrer, S., Havranek, O., Seyfried, F., Hurtz, C., Coffey, G.P., Kim, E., et al. 2016. Pre-BCR signaling in precursor B-cell acute lymphoblastic leukemia regulates PI3K/AKT, FOXO1 and MYC, and can be targeted by SYK inhibition.Leukemia. 30, 1246–54. UR - https://dergipark.org.tr/tr/pub/erciyesfen/issue//1714515 L1 - https://dergipark.org.tr/tr/download/article-file/4936860 ER -