TY - JOUR T1 - Metal içerikli Katalizörler Varlığında Sodyum Bor Hidrürün Hidroliziyle Hidrojen Üretiminin İncelenmesi TT - Investigation of Hydrogen Production by Sodium Boron Hydride Hydrolysis in the Presence of Metal-Containing Catalysts AU - Gündüz Meriç, Gamze AU - Yargıç, Adife Şeyda AU - Yaman Çamlı, Elif PY - 2025 DA - October Y2 - 2025 DO - 10.2339/politeknik.1717524 JF - Politeknik Dergisi PB - Gazi Üniversitesi WT - DergiPark SN - 2147-9429 SP - 1 EP - 1 LA - tr AB - Fosil yakıtların neden olduğu sera gazlarının etkilerinin azaltılmasıyla sürdürülebilir bir dünya sağlamayı amaçlayan küresel anlaşmalar, hidrojen üretimi de dahil olmak üzere daha temiz, daha verimli ve yenilenebilir enerji kaynakları için araştırmaları teşvik etmektedir. Hidrojen, düşük karbonlu teknolojilerin yayılmasına güçlü bir şekilde katkıda bulunabileceği ve enerji güvenliğini sağlayabileceği için sıfır emisyona doğru uzun vadeli bir çözüm olarak kabul edilmektedir. Bu çalışma, sodyum bor hidrürün (NaBH4) hidrolizi yöntemiyle hidrojen üretimine odaklanan yayınların kapsamlı bir analizini içermektedir. NaBH4’ün hidroliz süreci kendi başına çok yavaştır, ancak birçok metal esaslı katalizör (örn. Ru, Co, vb.) hidroliz süreci sırasında mükemmel katalitik aktivite göstermektedir. Yapılan bu derleme çalışmasında NaBH4’ün hidroliz reaksiyonunu etkileyen katalizör türleri ve reaksiyon parametreleri özetlenmiştir. Literatür çalışmalarından elde edilen sonuçlara göre, metal dispersiyonunun daha iyi olabilmesi için katalizör destek malzemesinin kullanılması tavsiye edilmektedir. Katalizör destek malzemeleri ayrıca katalizör maliyetini de düşürmektedir. Destek üzerine bi-metalik katkı yapıldığında ise metallerin sinerjik etkisi dolayısıyla aktivasyon enerjilerinin düştüğü ve hidrojen üretim hızının arttığı görülmüştür. NaBH4’ün suda sınırlı çözünürlüğü nedeniyle katalizörsüz hidroliz reaksiyonlarında H2 üretim hızı nispeten zayıf olduğundan katalizör miktarı ve yüklenen metal oranı arttıkça, hidrojen üretim hızı genellikle parabolik olarak artmaktadır. Reaksiyon ortamındaki NaBH4 konsantrasyonu arttıkça, hidrojen üretim hızı parabolik olarak artmaktadır. Ancak, yüksek NaBH4 konsantrasyonlarında katalizör yüzeyinde biriken NaBO2 sebebiyle hızda azalış meydana gelmektedir. Bu sebeple her sistem için reaksiyon parametreleri optimize edilmelidir. KW - Hidrojen üretimi KW - Hidroliz KW - Katalizör Türü KW - NaBH4 KW - Reaksiyon Parametreleri N2 - Global agreements aim to achieve a sustainable world by reducing the effects of greenhouse gases caused by fossil fuels encourage research into cleaner, more efficient and renewable energy sources, including hydrogen production. Hydrogen is considered as a long-term solution towards zero emission as it can strongly contribute to the spread of low-carbon technologies and ensure energy security. This survey covers a comprehensive analysis of searches focusing on the hydrogen production from hydrolysis of sodium borohydride (NaBH4). The self-hydrolysis process of NaBH4 is very slow, though various metal-based catalysts (e.g. Ru, Co, etc.) show excellent catalytic activity during the hydrolysis process. In this review, the catalyst types and reaction parameters affecting the hydrolysis reaction of NaBH4 were summarized. Based on literature studies, the use of catalyst support is recommended for improved metal dispersion. Catalyst support materials also reduce catalyst costs. Bi-metallic doping to the support have been shown to reduce activation energies and increase hydrogen production rates due to the synergistic effect of the metals. Due to the limited water solubility of NaBH4, the rate of H2 production in uncatalyzed hydrolysis reactions is relatively low. As the amount of catalyst and the metal loading ratio increase, the hydrogen production rate generally increases parabolically. As the NaBH4 concentration in the reaction medium increases, the hydrogen generation rate enhances parabolically. However, at high NaBH4 concentrations, the rate decreases due to NaBO2 agglomeration on the catalyst surface. Therefore, reaction parameters should be optimized for each reaction system. CR - [1] Büyük, P., Eryaşar, A., “Energy and exergy analysis of green hydrogen production,” Politeknik Dergisi, 28(2): 461-468. (2025). CR - [2] Osman A. I., Chen L., Yang M., Msigwa G., Farghali M., Fawzy S. and Yap P. S., “Cost, environmental impact, and resilience of renewable energy under a changing climate: a review”, Environmental Chemistry Letters, 21(2): 741-764, (2023). CR - [3] Raihan A, Tuspekova A., “Dynamic impacts of economic growth, energy use, urbanization, agricultural productivity, and forested area on carbon emissions: New insights from Kazakhstan”, World Development Sustainability, 1: 100019, (2022). CR - [4] Wei Y., Wang M., Fu W., Wei L., Zhao X., Zhou X. and Wang H., “Highly active and durable catalyst for hydrogen generation by the NaBH4 hydrolysis reaction: CoWB/NF nanodendrite with an acicular array structure”, Journal of Alloys and Compounds, 836: 155429, (2020). CR - [5] Osman A. I., Mehta N., Elgarahy A. M., Hefny M., Al-Hinai A., Al-Muhtaseb A. A. H. and Rooney D. W., “Hydrogen production, storage, utilisation and environmental impacts: a review”, Environmental Chemistry Letters, 1-36, (2022). CR - [6] Yue M., Lambert H., Pahon E., Roche R., Jemei, S. and Hissel D., “Hydrogen energy systems: A critical review of technologies, applications, trends and challenges”, Renewable and Sustainable Energy Reviews, 146: 111180, (2021). CR - [7] Megía P. J., Vizcaíno, A. J., Calles J. A. and Carrero A., “Hydrogen production technologies: from fossil fuels toward renewable sources”, A Mini Review. Energy & Fuels, 35(20): 16403-16415, (2021). CR - [8] Yörük, Ö., Uysal, D., & Doğan, Ö. M., “Low-voltage hydrogen production from formic acid: The role of different electrolysis parameters,” Politeknik Dergisi, Early Access: 1-1 (2025). CR - [9] Dragan M., “Hydrogen storage in complex metal hydrides NaBH4: hydrolysis reaction and experimental strategies”, Catalysts, 12(4): 356, (2022). CR - [10] Patel D. M., Gujarati V. P., Sumesh C. K. and Pataniya P. M., “Enhanced hydrolysis of NaBH4 using cobalt sulphide for hydrogen production”, Inorganic Chemistry Communications, 166: 112678, (2024). CR - [11] Amendola S. C., Sharp-Goldman S. L., Janjua M. S., Spencer N. C., Kelly M. T., Petillo P. J. and Binder M., “A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst”, International Journal of Hydrogen Energy, 25(10): 969-975, (2000). CR - [12] Saka C., Şahin Ö., Demir H., Karabulut A. and Sarikaya A., “Hydrogen generation from sodium borohydride hydrolysis with a Cu–Co-based catalyst: a kinetic study”, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(9): 956-964, (2015). CR - [13] Zahmakiran M. and Ozkar S., “Intrazeolite ruthenium (0) nanoclusters: a superb catalyst for the hydrogenation of benzene and the hydrolysis of sodium borohydride”, Langmuir, 24(14): 7065-7067, (2008). CR - [14] Altaf C. T., Minkina V. G., Shabunya S. I., Colak T. O., Sankir N. D., Sankir, M and Kalinin V. I., “Ruthenium and platinum-modified titanium dioxide support for NaBH4 hydrolysis”, Acs Omega, 8(39): 36100-36108, (2023). CR - [15] Patel N., Patton B., Zanchetta C., Fernandes R., Guella G., Kale, A. and Miotello A., “Pd-C powder and thin film catalysts for hydrogen production by hydrolysis of sodium borohydride”, International Journal of Hydrogen Energy, 33(1): 287-292, (2008). CR - [16] Netskina O. V., Kochubey D. I., Prosvirin I. P., Kellerman D. G., Simagina V. I. and Komova O. V., “Role of the electronic state of rhodium in sodium borohydride hydrolysis”, Journal of Molecular Catalysis A: Chemical, 390: 125-132, (2014). CR - [17] Hua D., Hanxi Y., Xinping, A. and Chuansin C., “Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst”, International Journal of Hydrogen Energy, 28(10): 1095-1100, (2003). CR - [18] Lee J., Kong K. Y., Jung C. R., Cho E., Yoon S. P., Han J., Lee T. G. and Nam S. W., “A structured Co–B catalyst for hydrogen extraction from NaBH4 solution”, Catalysis Today, 120(3-4): 305-310, (2007). CR - [19] Amendola S. C., Sharp-Goldman S. L., Janjua M. S., Spencer N. C., Kelly M. T., Petillo P. J. and Binder M., “A safe, portable, hydrogen gas generator using aqueous borohydride solution and Ru catalyst”, International Journal of Hydrogen Energy, 25(10): 969-975, (2000). CR - [20] Krishnan P., Yang T. H., Lee W. Y. and Kim C. S., “PtRu-LiCoO2—an efficient catalyst for hydrogen generation from sodium borohydride solutions”, Journal of Power Sources, 143(1-2), 17-23, (2005). CR - [21] Jafarzadeh H., Karaman C., Güngör, A., Karaman O., Show P. L., Sami, P. and Mehrizi A. A., “Hydrogen production via sodium borohydride hydrolysis catalyzed by cobalt ferrite anchored nitrogen-and sulfur co-doped graphene hybrid nanocatalyst: artificial neural network modeling approach”, Chemical Engineering Research and Design, 183: 557-566, (2022). CR - [22] Li Y., Zhou G., Yin J., Chen J., Tang C., Liu C. and Zhang L., “Photo-thermal synergic enhancement of CoxFeAl-LDHs for hydrogen generation from hydrolysis of NaBH4”, Applied Surface Science, 610: 155325, (2023). CR - [23] Groven L. J., Pfeil T. L. and Pourpoint T. L., “Solution combustion synthesized cobalt oxide catalyst precursor for NaBH4 hydrolysis”, International Journal of Hydrogen Energy, 38(15): 6377-6380, (2013). CR - [24] Li H., Liao J., Zhang X., Liao W., Wen L., Yang J. and Wang R., “Controlled synthesis of nanostructured Co film catalysts with high performance for hydrogen generation from sodium borohydride solution”, Journal of Power Sources, 239: 277-283, (2013). CR - [25] Hua D., Hanxi Y., Xinping, A. and Chuansin C., “Hydrogen production from catalytic hydrolysis of sodium borohydride solution using nickel boride catalyst”, International Journal of Hydrogen Energy, 28(10): 1095-1100, (2003). CR - [26] Çakanyıldırım Ç. ve Gökçeoğlu G., “NaBH4 hidrolizi için Al2O3 destekli çok bileşenli nano katalizör sentezi ve kinetik değerlendirmesi”, Politeknik Dergisi, 26(1): 143-152, (2023). CR - [27] Selvitepe N., Balbay, A. and Saka C., “Optimisation of sepiolite clay with phosphoric acid treatment as support material for CoB catalyst and application to produce hydrogen from the NaBH4 hydrolysis”, International Journal of Hydrogen Energy, 44(31): 16387-16399, (2019). CR - [28] Cho K. W. and Kwon H. S., “Effects of electrodeposited Co and Co–P catalysts on the hydrogen generation properties from hydrolysis of alkaline sodium borohydride solution”, Catalysis Today, 120(3-4), 298-304, (2007). CR - [29] Kaya C., Özdemir, J. H., Elçiçek, H., Özdemir, O. K., Kökkülünk, G. and Ünlügençoğlu K., “Enhancing the efficiency of sodium borohydride hydrolysis with a novel CoB-Triton catalyst”, International Journal of Hydrogen Energy, 51: 489-503, (2024). CR - [30] Xu F., Ren J., Ma J., Wang Y., Zhang K., Cao Z. and Bai S., “A review of hydrogen production kinetics from the hydrolysis of NaBH4 solution catalyzed by Co-based catalysts”, International Journal of Hydrogen Energy, 50: 827-844, (2024). CR - [31] Lu Y. C., Chen M. S. and Chen Y. W., “Hydrogen generation by sodium borohydride hydrolysis on nanosized CoB catalysts supported on TiO2, Al2O3 and CeO2”, International Journal of Hydrogen Energy, 37(5): 4254-4258, (2012). CR - [32] Santos F. L., Giroto A. S., Torres J. A., Oliveira A. V., e Santos V. M. and Nogueira A. E., “Hydrogen generation via NaBH4 hydrolysis over cobalt-modified niobium oxide catalysts”, International Journal of Hydrogen Energy, 92: 113-123, (2024). CR - [33] Zhao Y., Ning Z., Tian J., Wang H., Liang X., Nie S. and Li X., “Hydrogen generation by hydrolysis of alkaline NaBH4 solution on Co–Mo–Pd–B amorphous catalyst with efficient catalytic properties”, Journal of Power Sources, 207: 120-126, (2012). CR - [34] Fernandes R., Patel N. and Miotello A., “Hydrogen generation by hydrolysis of alkaline NaBH4 solution with Cr-promoted Co–B amorphous catalyst”, Applied Catalysis B: Environmental, 92(1-2), 68-74, (2009). CR - [35] Zhao J., Ma, H. and Chen J., “Improved hydrogen generation from alkaline NaBH4 solution using carbon-supported Co–B as catalysts”, International Journal of Hydrogen Energy, 32(18): 4711-4716, (2007). CR - [36] İzgi M. S., Baytar O., Şahin, Ö. and Kazıcı H. Ç., “CeO2 supported multimetallic nano materials as an efficient catalyst for hydrogen generation from the hydrolysis of NaBH4”, International Journal of Hydrogen Energy, 45(60): 34857-34866, (2020). CR - [37] Xiang C., Jiang D., She Z., Zou Y., Chu H., Qiu S., Zhang H., Xu F., Tang, C. and Sun L., “Hydrogen generation by hydrolysis of alkaline sodium borohydride using a cobalt–zinc–boron/graphene nanocomposite treated with sodium hydroxide”, International Journal of Hydrogen Energy, 40(11): 4111-4118, (2015). CR - [38] Akbayrak S., Tonbul, Y. and Özkar S., “Ceria supported rhodium nanoparticles: superb catalytic activity in hydrogen generation from the hydrolysis of ammonia borane”, Applied Catalysis B: Environmental, 198: 162-170, (2016). CR - [39] Shen J., Xu D., Ji J., Zhang, Q. and Fan X., “In situ evolved defective TiO2 as robust support for CoB-catalyzed hydrolysis of NaBH4”, International Journal of Hydrogen Energy, 48(3): 1001-1010, (2023). CR - [40] Manna J., Roy B., Pareek, D. and Sharma P., “Hydrogen generation from NaBH4 hydrolysis using Co-B/AlPO4 and Co-B/bentonite catalysts”, Catalysis, Structure & Reactivity, 3(4): 157-164, (2017). CR - [41] Joydev M., Binayak, R. and Pratibha S., “Zeolite supported cobalt catalysts for sodium borohydride hydrolysis”, Applied Mechanics and Materials, 490: 213-217, (2014). CR - [42] Zahmakiran M. and Ozkar S., “Zeolite-confined ruthenium (0) nanoclusters catalyst: record catalytic activity, reusability, and lifetime in hydrogen generation from the hydrolysis of sodium borohydride”, Langmuir, 25(5): 2667-2678, (2009). CR - [43] Wen L., Su J., Wu X., Cai P., Luo, W. and Cheng G., “Ruthenium supported on MIL-96: an efficient catalyst for hydrolytic dehydrogenation of ammonia borane for chemical hydrogen storage”, International Journal of Hydrogen Energy, 39(30): 17129-17135, (2014). CR - [44] Saka C., Eygi̇, M. S. and Balbay A., “Cobalt loaded organic acid modified kaolin clay for the enhanced catalytic activity of hydrogen release via hydrolysis of sodium borohydride”, International Journal of Hydrogen Energy, 46(5): 3876-3886, (2021). CR - [45] Tian H., Guo, Q. and Xu D., “Hydrogen generation from catalytic hydrolysis of alkaline sodium borohydride solution using attapulgite clay-supported Co-B catalyst”, Journal of Power Sources, 195(8): 2136-2142, (2010). CR - [46] Saka C., Kaya, M. and Bekiroğullari M., “Spirulina Platensis microalgae strain modified with phosphoric acid as a novel support material for Co–B catalysts: its application to hydrogen production”, International Journal of Hydrogen Energy, 45(4): 2872-2883, (2020). CR - [47] Kamal T., Khan S. B. and Asiri A. M., “Nickel nanoparticles-chitosan composite coated cellulose filter paper: an efficient and easily recoverable dip-catalyst for pollutants degradation”, Environmental Pollution, 218: 625-633, (2016). CR - [48] Sahiner N., “Soft and flexible hydrogel templates of different sizes and various functionalities for metal nanoparticle preparation and their use in catalysis”, Progress in Polymer Science, 38(9): 1329-1356, (2013). CR - [49] Sehaqui H., Brahmi Y. and Ju W., “Facile and universal method for the synthesis of metal nanoparticles supported onto carbon foams”, Cellulose, 27(1): 263-271, (2020). CR - [50] Yıldız D., Sarıboğa E., Altınay B. S. Denktaş D., Şirin G., Altun Ş. N., Kaya Ş., Demir Kıvrak H. and Korkmaz N., “Activated carbon from waste fabrics as a catalyst for NaBH4 methanolysis”, Process Safety and Environmental Protection, 185: 831-838, (2024). CR - [51] Baydaroglu F., Özdemir E. and Hasimoglu A., “An effective synthesis route for improving the catalytic activity of carbon-supported Co–B catalyst for hydrogen generation through hydrolysis of NaBH4”, International Journal of Hydrogen Energy, 39(3): 1516-1522, (2014). CR - [52] Xu D., Wang H., Guo Q. and Ji S., “Catalytic behavior of carbon supported Ni–B, Co–B and Co–Ni–B in hydrogen generation by hydrolysis of KBH4”, Fuel Processing Technology, 92(8): 1606-1610, (2011). CR - [53] Chen W., Ji J., Duan X., Qian G., Li P., Zhou X., Chen D. and Yuan W., “Unique reactivity in Pt/CNT catalyzed hydrolytic dehydrogenation of ammonia borane”, Chemical Communications, 50(17): 2142-2144, (2014). CR - [54] Yao Q., Lu Z. H., Jia Y., Chen X. and Liu X., “In situ facile synthesis of Rh nanoparticles supported on carbon nanotubes as highly active catalysts for H2 generation from NH3BH3 hydrolysis”, International Journal of Hydrogen Energy, 40(5): 2207-2215, (2015). CR - [55] Chou C. C., Hsieh C. H. and Chen B. H., “Hydrogen generation from catalytic hydrolysis of sodium borohydride using bimetallic Ni–Co nanoparticles on reduced graphene oxide as catalysts”, Energy, 90: 1973-1982, (2015). CR - [56] Feng W., Yang L., Cao N., Du C., Dai H., Luo W. and Cheng G., “In situ facile synthesis of bimetallic CoNi catalyst supported on graphene for hydrolytic dehydrogenation of amine borane”, International Journal of Hydrogen Energy, 39(7): 3371-3380, (2014). CR - [57] Shen J., Yang L., Hu K., Luo W. and Cheng G., “Rh nanoparticles supported on graphene as efficient catalyst for hydrolytic dehydrogenation of amine boranes for chemical hydrogen storage”, International Journal of Hydrogen Energy, 40(2): 1062-1070, (2015). CR - [58] Zhu J., Li R., Niu W., Wu Y. and Gou X., “Fast hydrogen generation from NaBH4 hydrolysis catalyzed by carbon aerogels supported cobalt nanoparticles”, International Journal of Hydrogen Energy, 38(25): 10864-10870, (2013). CR - [59] Niu W., Ren D., Han Y., Wu. Y and Gou X., “Optimizing preparation of carbon supported cobalt catalyst for hydrogen generation from NaBH4 hydrolysis”, Journal of Alloys and Compounds, 543: 159-166, (2012). CR - [60] Ye W., Zhang H., Xu D., Ma L. and Yi B., “Hydrogen generation utilizing alkaline sodium borohydride solution and supported cobalt catalyst”, Journal of Power Sources, 164(2): 544-548, (2007). CR - [61] Chamoun R., Demirci B., Cornu D., Zaatar Y., Khoury R., Khoury A. and Miele P., “From soil to lab: Utilization of clays as catalyst supports in hydrogen generation from sodium borohydride fuel”, Fuel, 90(5): 1919-1926, (2011). CR - [62] Akdim O., Demirci U. B. and Miele P., “Highly efficient acid-treated cobalt catalyst for hydrogen generation from NaBH4 hydrolysis”, International Journal of Hydrogen Energy, 34(11): 4780-4787, (2009). CR - [63] Bennici S., Yu H., Obeid E. and Auroux A., “Highly active heteropolyanions supported Co catalysts for fast hydrogen generation in NaBH4 hydrolysis”, International Journal of Hydrogen Energy, 36(13): 7431-7442, (2011). CR - [64] Lefebvre F., Liu-Cai F. X. and Auroux A., “Microcalorimetric study of the acidity of tungstic heteropolyanions”, Journal of Materials Chemistry, 4(1): 125-131, (1994). CR - [65] Clacens J. M., Genuit D., Delmotte L., Garcia-Ruiz A., Bergeret G., Montiel R., Lopez J. and Figueras F., “Effect of the support on the basic and catalytic properties of KF”, Journal of Catalysis, 221(2): 483-490, (2004). CR - [66] Clark J. H., “Fluoride ion as a base in organic synthesis”, Chemical Reviews, 80(5): 429-452, (1980). CR - [67] Prescott H. A., Li Z. J., Kemnitz E., Trunschke A., Deutsch J., Lieske H. and Auroux A., “Application of calcined Mg–Al hydrotalcites for Michael additions: an investigation of catalytic activity and acid–base properties”, Journal of Catalysis, 234(1): 119-130, (2005). CR - [68] Balbay A., Selvitepe N. and Saka C., “Fe doped-CoB catalysts with phosphoric acid-activated montmorillonite as support for efficient hydrogen production via NaBH4 hydrolysis”, International Journal of Hydrogen Energy, 46(1): 425-438, (2021). CR - [69] Kıpçak İ. and Kalpazan E., “Preparation of CoB catalysts supported on raw and Na-exchanged bentonite clays and their application in hydrogen generation from the hydrolysis of NaBH4”, International Journal of Hydrogen Energy, 45(50): 26434-26444, (2020). CR - [70] Hosgun S., Ozdemir M. Sahin Y. B., “Optimization of hydrogen generation by catalytic hydrolysis of NaBH4 with halloysite-supported CoB catalyst using response surface methodology”, Clays and Clay Minerals, 69(1): 128-141, (2021). CR - [71] Dadkhah M., Salavati-Niasari M. and Mir N., “Synthesis and characterization of TiO2 nanoparticles by using new shape controllers and its application in dye sensitized solar cells”, Journal of Industrial and Engineering Chemistry, 20(6): 4039-4044, (2014). CR - [72] Masjedi M., Mir N., Noori E., Gholami T. and Salavati-Niasari M., “Effect of Schiff base ligand on the size and the optical properties of TiO2 nanoparticles”, Superlattices and Microstructures, 62: 30-38, (2013). CR - [73] Bhattacharyya K., Danon A., Vijayan B. K., Gray K. A., Stair P. C. and Weitz E., “Role of the surface lewis acid and base sites in the adsorption of CO2 on titania nanotubes and platinized titania nanotubes: an in situ FT-IR study”, The Journal of Physical Chemistry C, 117(24): 12661-12678, (2013). CR - [74] Harima Y., Fujita T., Kano Y., Imae I., Komaguchi K., Ooyama Y. and Ohshita J., “Lewis-acid sites of TiO2 surface for adsorption of organic dye having pyridyl group as anchoring unit”, The Journal of Physical Chemistry C, 117(32): 16364-16370, (2013). CR - [75] Ramya K., Dhathathreyan K. S., Sreenivas J., Kumar S. and Narasimhan S., “Hydrogen production by alcoholysis of sodium borohydride”, International Journal of Energy Research, 37(14): 1889-1895, (2013). CR - [76] Shang Y., Chen R. and Jiang G., “Kinetic study of NaBH4 hydrolysis over carbon-supported ruthenium”, International Journal of Hydrogen Energy, 33(22): 6719-6726, (2008). CR - [77] Gilani N., Vahabzadeh Pasikhani J., Akbari M. and Tafazoli Motie P., “Hydrogen evolution from catalytic hydrolysis of NaBH4: Comparative study between the catalytic activity of TiO2 nanotubes with various arrangements”, Journal of Nanostructures, 9(3): 587-599, (2019). CR - [78] Şahin Ö., İzgi M. S., Onat E. and Saka C., “Influence of the using of methanol instead of water in the preparation of Co–B–TiO2 catalyst for hydrogen production by NaBH4 hydrolysis and plasma treatment effect on the Co–B–TiO2 catalyst”, International Journal of Hydrogen Energy, 41(4): 2539-2546, (2016). CR - [79] Kılınç D. and Şahin, Ö., “Effective TiO2 supported Cu-Complex catalyst in NaBH4 hydrolysis reaction to hydrogen generation”, International Journal of Hydrogen Energy, 44(34): 18858-18865, (2019). CR - [80] Shen X., Wang Q., Wu Q., Guo S., Zhang Z., Sun Z., Liu B., Wang Z., Zhao B. and Ding W., “CoB supported on Ag-activated TiO2 as a highly active catalyst for hydrolysis of alkaline NaBH4 solution”, Energy, 90: 464-474, (2015). CR - [81] Li R., Zhang F., Zhang J. and Dong H., “Catalytic hydrolysis of NaBH4 over titanate nanotube supported Co for hydrogen production”, International Journal of Hydrogen Energy, 47(8): 5260-5268, (2022). CR - [82] Na H. S., Shim J. O., Ahn S. Y., Jang W. J., Jeon K. W., Kim H. M., Lee Y. L., Kim K. J. and Roh H. S., “Effect of precipitation sequence on physicochemical properties of CeO2 support for hydrogen production from low-temperature water-gas shift reaction”, International Journal of Hydrogen Energy, 43(37): 17718-17725, (2018). CR - [83] Simell P. A., Hepola J. O. and Krause A. O. I., “Effects of gasification gas components on tar and ammonia decomposition over hot gas cleanup catalysts”, Fuel, 76(12): 1117-1127, (1997). CR - [84] Wu C. and Williams P. T., “Hydrogen production by steam gasification of polypropylene with various nickel catalysts”, Applied Catalysis B: Environmental, 87(3-4): 152-161, (2009). CR - [85] Wang S. and Lu G. Q., “Effects of promoters on catalytic activity and carbon deposition of Ni/γ‐Al2O3 catalysts in CO2 reforming of CH4”, Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 75(7): 589-595, (2000). CR - [86] Kılınç D., Şahi̇n Ö. and Saka C., “Salicylaldimine-Ni complex supported on Al2O3: Highly efficient catalyst for hydrogen production from hydrolysis of sodium borohydride”, International Journal of Hydrogen Energy, 43(1): 251-261, (2018). CR - [87] Jeong S. U., Kim R. K., Cho E., Kim H. J., Nam S. W., Oh I. H., Hong S. A. and Kim S. H., “A study on hydrogen generation from NaBH4 solution using the high-performance Co-B catalyst”, Journal of Power Sources, 144(1): 129-134, (2005). CR - [88] Kaufman C. M. and Sen B., “Hydrogen generation by hydrolysis of sodium tetrahydroborate: effects of acids and transition metals and their salts”, Journal of the Chemical Society, Dalton Transactions, (2): 307-313, (1985). CR - [89] Ren A., Liu C., Hong Y., Shi W., Lin S. and Li P., “Enhanced visible-light-driven photocatalytic activity for antibiotic degradation using magnetic NiFe2O4/Bi2O3 heterostructures”, Chemical Engineering Journal, 258: 301-308, (2014). CR - [90] Gao Z., Feng Y., Cui F., Hua Z., Zhou J., Zhu Y. and Shi J., “Pd-loaded superparamagnetic mesoporous NiFe2O4 as a highly active and magnetically separable catalyst for Suzuki and Heck reactions”, Journal of Molecular Catalysis A: Chemical, 336(1-2): 51-57, (2011). CR - [91] Liang Z., Li Q., Li F., Zhao S. and Xia X., “Hydrogen generation from hydrolysis of NaBH4 based on high stable NiB/NiFe2O4 catalyst”, International Journal of Hydrogen Energy, 42(7): 3971-3980, (2017). CR - [92] Chen B., Chen S., Bandal H. A., Appiah-Ntiamoah R., Jadhav A. R. and Kim H., “Cobalt nanoparticles supported on magnetic core-shell structured carbon as a highly efficient catalyst for hydrogen generation from NaBH4 hydrolysis”, International Journal of Hydrogen Energy, 43(19): 9296-9306, (2018). CR - [93] Xu D., Dai P., Liu X., Cao C. and Guo Q., “Carbon-supported cobalt catalyst for hydrogen generation from alkaline sodium borohydride solution”, Journal of Power Sources, 182(2): 616-620, (2008). CR - [94] Zou Y. C., Nie M., Huang Y. M., Wang J. Q. and Liu H. L., “Kinetics of NaBH4 hydrolysis on carbon-supported ruthenium catalysts,” International Journal of Hydrogen Energy, 36(19): 12343-12351, (2011). CR - [95] Zou Y. C., Huang Y. M., Li X. and Liu H. L., “A durable ruthenium catalyst for the NaBH4 hydrolysis”, International Journal of Hydrogen Energy, 36(7): 4315-4322, (2011). CR - [96] Crisafulli C., Scirè, S., Salanitri M., Zito R. and Calamia S., “Hydrogen production through NaBH4 hydrolysis over supported Ru catalysts: An insight on the effect of the support and the ruthenium precursor”, International Journal of Hydrogen Energy, 36(6): 3817-3826, (2011). CR - [97] Fiorenza R., Scirè S. and Venezia A. M., “Carbon supported bimetallic Ru‐Co catalysts for H2 production through NaBH4 and NH3BH3 hydrolysis”, International Journal of Energy Research, 42(3): 1183-1195, (2018). CR - [98] Dai K., Peng T., Ke D. and Wei B., “Photocatalytic hydrogen generation using a nanocomposite of multi-walled carbon nanotubes and TiO2 nanoparticles under visible light irradiation”, Nanotechnology, 20(12): 125603, (2009). CR - [99] Huang Y., Wang Y., Zhao R., Shen P. K. and Wei Z., “Accurately measuring the hydrogen generation rate for hydrolysis of sodium borohydride on multiwalled carbon nanotubes/Co–B catalysts”, International Journal of Hydrogen Energy, 33(23): 7110-7115, (2008). CR - [100] Liu Q., Tian J., Cui W., Jiang P., Cheng N., Asiri A. M. and Sun X., “Carbon nanotubes decorated with CoP nanocrystals: a highly active non‐noble‐metal nanohybrid electrocatalyst for hydrogen evolution”, Angewandte Chemie International Edition, 53(26): 6710-6714, (2014). CR - [101] Serp P., Corrias M. and Kalck, P., “Carbon nanotubes and nanofibers in catalysis”, Applied Catalysis A: General, 253(2): 337-358, (2003). CR - [102] Li F., Arthur E. E., La D., Li Q., and Kim H., “Immobilization of CoCl2 (cobalt chloride) on PAN (polyacrylonitrile) composite nanofiber mesh filled with carbon nanotubes for hydrogen production from hydrolysis of NaBH4 (sodium borohydride)”, Energy, 71: 32-39. (2014). CR - [103] Akbayrak S. and Özkar S., “Ruthenium (0) nanoparticles supported on multiwalled carbon nanotube as highly active catalyst for hydrogen generation from ammonia–borane”, ACS Applied Materials & Interfaces, 4(11): 6302-6310, (2012). CR - [104] Bandal H. A., Jadhav A. R. and Kim, H., “Cobalt impregnated magnetite-multiwalled carbon nanotube nanocomposite as magnetically separable efficient catalyst for hydrogen generation by NaBH4 hydrolysis”, Journal of Alloys and Compounds, 699:1057-1067, (2017). CR - [105] Laurent C., Peigney A., Dumortier O. and Rousset, A., “Carbon nanotubes–Fe–Alumina nanocomposites. Part II: microstructure and mechanical properties of the hot-Pressed composites”, Journal of the European Ceramic Society, 18(14): 2005-2013, (1998). CR - [106] Flahaut E., Peigney A., Laurent C., Marliere, C. Chastel, F. and Rousset, A. “Carbon nanotube–metal–oxide nanocomposites: microstructure, electrical conductivity and mechanical properties”, Acta Materialia, 48(14): 3803-3812, (2000). CR - [107] He H. and Gao, C., “Synthesis of Fe3O4/Pt nanoparticles decorated carbon nanotubes and their use as magnetically recyclable catalysts”, Journal of Nanomaterials, 2011(1), 193510. (2011). CR - [108] Prasad D., Patil K. N., Sandhya N., Chaitra C. R., Bhanushali J. T., Samal A. K., Keri R. S., Jadhav A. H. and Nagaraja B. M., “Highly efficient hydrogen production by hydrolysis of NaBH4 using eminently competent recyclable Fe2O3 decorated oxidized MWCNTs robust catalyst,” Applied Surface Science, 489: 538–551, (2019). CR - [109] Patel N., Fernandes R., Bazzanella N. and Miotello A., “Enhanced hydrogen production by hydrolysis of NaBH4 using ‘Co-B nanoparticles supported on carbon film’ catalyst synthesized by pulsed laser deposition,” Catalysis Today, 170(1): 20–26, (2011). CR - [110] Julkapli N. M. and Bagheri S., “Graphene supported heterogeneous catalysts: An overview,” International Journal of Hydrogen Energy, 40(2): 948–979, (2015). CR - [111] Wang C. and Astruc D., “Recent developments of metallic nanoparticle-graphene nanocatalysts,” Progress in Materials Science, 94: 306–383, (2018). CR - [112] Zhang R., Zheng J., Chen T., Ma G. and Zhou W., “RGO-wrapped Ni–P hollow octahedrons as noble-metal-free catalysts to boost the hydrolysis of ammonia borane toward hydrogen generation,” Journal of Alloys and Compounds, 763: 538–545, (2018). CR - [113] Yang Y., Lu Z. H., Hu Y., Zhang Z., Shi W., Chen X. and Wang T., “Facile in situ synthesis of copper nanoparticles supported on reduced graphene oxide for hydrolytic dehydrogenation of ammonia borane,” RSC Advances, 4(27): 13749–13752, (2014). CR - [114] Yao Q., Lu Z. H., Huang W., Chen X. and Zhu J., “High Pt-like activity of the Ni–Mo/graphene catalyst for hydrogen evolution from hydrolysis of ammonia borane,” Journal of Materials Chemistry A, 4(22): 8579–8583, (2016). CR - [115] Cui Z., Guo Y. and Ma J., “In situ synthesis of graphene supported Co–Sn–B alloy as an efficient catalyst for hydrogen generation from sodium borohydride hydrolysis,” International Journal of Hydrogen Energy, 41(3): 1592–1599, (2016). CR - [116] Shi L., Xie W., Jian Z., Liao X. and Wang Y., “Graphene modified Co–B catalysts for rapid hydrogen production from NaBH4 hydrolysis,” International Journal of Hydrogen Energy, 44(33): 17954–17962, (2019). CR - [117] Zhu J., Li R., Niu W., Wu Y. and Gou X., “Facile hydrogen generation using colloidal carbon supported cobalt to catalyze hydrolysis of sodium borohydride,” Journal of Power Sources, 211: 33–39, (2012). CR - [118] Haider S., Kamal T., Khan S. B., Omer M., Haider A., Khan F. U. and Asiri A. M., “Natural polymers supported copper nanoparticles for pollutants degradation,” Applied Surface Science, 387: 1154–1161, (2016). CR - [119] Chen X., Xu X. J., Zheng X. C., Guan X. X. and Liu P., “Chitosan supported palladium nanoparticles: The novel catalysts for hydrogen generation from hydrolysis of ammonia borane,” Materials Research Bulletin, 103: 89–95, (2018). CR - [120] Akbar S., Qureshi M. N. and Khan S. A., “Fabrication of chitosan supported copper nano catalyst for the hydrogen gas production through methanolysis and hydrolysis of NaBH4,” International Journal of Hydrogen Energy, 101: 313–322, (2025). CR - [121] Demirci S. and Sahiner N., “Superior reusability of metal catalysts prepared within poly (ethylene imine) microgels for H2 production from NaBH4 hydrolysis,” Fuel Processing Technology, 127: 88–96, (2014). CR - [122] Sahiner N., Seven F. and Al-Lohedan H., “Super-fast hydrogen generation via super porous QP(VI)-M cryogel catalyst systems from hydrolysis of NaBH4,” International Journal of Hydrogen Energy, 40(13): 4605–4616, (2015). CR - [123] Yildiz S., Aktas N. and Sahiner N., “Metal nanoparticle-embedded super porous poly (3-sulfopropyl methacrylate) cryogel for H2 production from chemical hydride hydrolysis,” International Journal of Hydrogen Energy, 39(27): 14690–14700, (2014). CR - [124] Sahiner N. and Yasar A. O., “Monodispersed p(2-VP) and p(2-VP-co-4-VP) particle preparation and their use as template for metal nanoparticle and as catalyst for H₂ production from NaBH4 and NH3BH3 hydrolysis,” International Journal of Hydrogen Energy, 39(20): 10476–10484, (2014). CR - [125] Seven F. and Sahiner N., “Enhanced catalytic performance in hydrogen generation from NaBH4 hydrolysis by super porous cryogel supported Co and Ni catalysts,” Journal of Power Sources, 272: 128–136, (2014). CR - [126] Sahiner N. and Yasar A. O., “Co nanoparticle decorated magnetic core, polymeric ionic liquid shell composites for H2 production,” Fuel Processing Technology, 144: 124–131, (2016). CR - [127] Lin K. Y. A. and Chang H. A., “Efficient hydrogen production from NaBH4 hydrolysis catalyzed by a magnetic cobalt/carbon composite derived from a zeolitic imidazolate framework,” Chemical Engineering Journal, 296: 243–251, (2016). CR - [128] Ding J., Li Q., Su Y., Yue Q., Gao B. and Zhou W., “Preparation and catalytic activity of wheat straw cellulose-based hydrogel–nanometal composites for hydrogen generation from NaBH4 hydrolysis,” International Journal of Hydrogen Energy, 43(21): 9978–9987, (2018). CR - [129] Mahpudz A., Lim S. L., Inokawa H., Kusakabe K. and Tomoshige R., “Cobalt nanoparticle supported on layered double hydroxide: Effect of nanoparticle size on catalytic hydrogen production by NaBH4 hydrolysis,” Environmental Pollution, 290: 117990, (2021). CR - [130] Krishnan P., Advani S. G. and Prasad A. K., “Thin-film CoB catalyst templates for the hydrolysis of NaBH4 solution for hydrogen generation,” Applied Catalysis B: Environmental, 86(3–4): 137–144, (2009). CR - [131] Ozdemir O., “Analysis of kinetic properties for the hydrolysis reaction of NaBH4 and environmental effects in the hydrogen production of activated Co–Ti(II)–B alloy catalysts,” Journal of the Faculty of Engineering and Architecture of Gazi University, 34(3), (2019). CR - [132] Onat E. and Ekinci S., “Study of the sodium borohydride hydrolysis reaction’s performance via a kaolin-supported Co–Cr bimetallic catalyst,” Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 24(5): 1061–1070, (2024). CR - [133] Abdel-Salam M. O., Kim Y., Moustafa Y. M. and Yoon T., “Design a well-dispersed Ag-based/CoFe2O4–CNT catalyst for hydrogen production via NaBH₄ hydrolysis,” Ceramics International, 50(22): 46419–46428, (2024). CR - [134] Ma J., Han Y., Wang X., Wang Y., Zhang K., Cao Z. and Wu S., “Co-PB/Ti foil as an efficient catalyst for hydrogen production from the hydrolysis of NaBH4 solution,” Materials Research Bulletin, 179: 112992, (2024). CR - [135] Mirshafiee F. and Rezaei M., “Enhancing hydrogen generation from sodium borohydride hydrolysis and the role of a Co/CuFe2O4 nanocatalyst in a continuous flow system,” Scientific Reports, 14(1): 9659, (2024). CR - [136] Al-Enizi A. M., El-Halwany M. M., Shaikh S. F., Pandit B. and Yousef A., “Electrospun nickel nanoparticles@poly (vinylidene fluoride-hexafluoropropylene) nanofibers as effective and reusable catalyst for H2 generation from sodium borohydride,” Arabian Journal of Chemistry, 15(11): 104207, (2022). CR - [137] Kim G. J. and Hwang H. T., “Thermal hydrolysis of solid-state sodium borohydride for noncatalytic hydrogen generation,” Chemical Engineering Journal, 424: 130445, (2021). CR - [138] Kord S., Fathirad F., Afzali D. and Fayazi M., “Boron–Cobalt–Nickel–Yttrium nanocatalysts for hydrogen production from the hydrolysis of alkaline sodium borohydride solution,” Inorganic Chemistry Communications, 136: 109130, (2022). CR - [139] Mirshafiee F. and Rezaei M., “Synergistic catalytic performance of Co–Fe/CQD nanocatalyst for rapid hydrogen generation through NaBH4 hydrolysis,” International Journal of Hydrogen Energy, 79: 139–149, (2024). CR - [140] Ekinci A., Şahin Ö. and Horoz S., “Kinetics of catalytic hydrolysis of NaBH4 solution: Ni–La–B catalyst,” Journal of the Australian Ceramic Society, 58(1): 113–121, (2022). CR - [141] Wang Y. P., Wang Y. J., Ren Q. L., Li L., Jiao L. F., Song D. W. and Yuan H. T., “Ultrafine amorphous Co–Fe–B catalysts for the hydrolysis of NaBH4 solution to generate hydrogen for PEMFC,” Fuel Cells, 10(1): 132–138, (2010). CR - [142] Abutaleb A., Maafa I. M., Zouli N., Yousef A. and El-Halwany M. M., “Synthesis of trimetallic nanoparticle (NiCoPd)-supported carbon nanofibers as a catalyst for NaBH₄ hydrolysis,” Membranes, 13(9): 783, (2023). CR - [143] Hashimi A. S., Nohan M. A. N. M., Chin S. X., Khiew P. S., Zakaria S. and Chia C. H., “Copper nanowires as highly efficient and recyclable catalyst for rapid hydrogen generation from hydrolysis of sodium borohydride,” Nanomaterials, 10(6): 1153, (2020). CR - [144] Kılınç D., “Silika destekli Ni(II)-salisilaldimin kompleksinin sentezi, karakterizasyonu ve hidrojen üretimindeki katalitik etkisinin incelenmesi,” Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1): 296–310, (2018). CR - [145] Zhang X., Cheng Y., Li C., Guo Q. and Meng X., “Catalytic hydrolysis of alkaline sodium borohydride solution for hydrogen evolution in a micro-scale fluidized bed reactor,” International Journal of Energy Research, 44(8): 6758–6766, (2020). CR - [146] Patel N. and Miotello A., “Progress in Co–B related catalyst for hydrogen production by hydrolysis of boron-hydrides: A review and the perspectives to substitute noble metals,” International Journal of Hydrogen Energy, 40(3): 1429–1464, (2015). CR - [147] Patel N., Fernandes R., Santini A. and Miotello A., “Co–B nanoparticles supported on carbon film synthesized by pulsed laser deposition for hydrolysis of ammonia borane,” International Journal of Hydrogen Energy, 37(2): 2007–2013, (2012). UR - https://doi.org/10.2339/politeknik.1717524 L1 - https://dergipark.org.tr/tr/download/article-file/4949802 ER -