TY - JOUR T1 - A Hybrid MCDM Model for Personnel Evaluation: Integrating AHP, Fuzzy TOPSIS and VIKOR with Composite Scoring TT - Personel Değerlendirmesi için Hibrit Bir MCDM Modeli: AHP, Bulanık TOPSIS ve VIKOR'un Bileşik Puanlama ile Entegre Edilmesi AU - Sarikaya, Hüseyin Ali PY - 2025 DA - July Y2 - 2025 JF - Uygulamalı Mühendislik ve Tarım Dergisi JO - UMTD PB - Konya Gıda ve Tarım Üniversitesi WT - DergiPark SN - 3061-9696 SP - 44 EP - 71 VL - 2 IS - 1 LA - en AB - Personnel selection is a vital strategic function for businesses that work in knowledge-intensive and public-facing sectors, such as science centers. Traditional evaluation methodologies frequently fail to capture the inherent ambiguity and subjectivity in candidate assessments. To address these constraints, this study offers a robust hybrid fuzzy multi-criteria decision-making (MCDM) framework that incorporates the Analytic Hierarchy Process (AHP), Fuzzy TOPSIS, and Fuzzy VIKOR. Furthermore, a unique aggregation mechanism known as the Fuzzy Composite Ranking Score (FCRS) is developed to combine the outputs of Fuzzy TOPSIS and Fuzzy VIKOR into a single ranking score that balances proximity to the ideal solution with compromise among conflicting criteria.The proposed methodology was applied to a real-world case study at the Konya Science Center (KSC), where seven full-time and seven part-time candidates were evaluated based on seven criteria. The AHP method was used to derive weights for each criterion through expert pairwise comparisons, which were validated through consistency ratio analysis. Expert linguistic evaluations of candidates were converted into triangular fuzzy numbers and processed through Fuzzy TOPSIS and VIKOR models. The final rankings produced by FCRS demonstrated a high degree of agreement with individual method results while addressing contradictions between them.The results show that the proposed hybrid framework can allow nuanced, transparent, and robust personnel selection decisions in complicated organizational situations. The model is scalable and adaptable to a wide range of decision-making scenarios involving human judgment in uncertain environments. KW - Hybrid MCDM KW - Personnel selection under uncertainty KW - AHP-based criteria weighting KW - Fuzzy TOPSIS–VIKOR fusion KW - Fuzzy composite ranking score N2 - Personel seçimi, bilim merkezleri gibi bilgi yoğun ve kamuya dönük sektörlerde çalışan işletmeler için hayati bir stratejik işlevdir. Geleneksel değerlendirme metodolojileri, aday değerlendirmelerindeki doğal belirsizliği ve öznelliği yakalamakta sıklıkla başarısız olmaktadır. Bu kısıtlamaları ele almak için, bu çalışma Analitik Hiyerarşi Süreci (AHP), Bulanık TOPSIS ve Bulanık VIKOR'u içeren sağlam bir hibrit bulanık çok kriterli karar verme (ÇKKV) çerçevesi sunmaktadır. Ayrıca, Bulanık TOPSIS ve Bulanık VIKOR çıktılarını, çatışan kriterler arasında uzlaşma ile ideal çözüme yakınlığı dengeleyen tek bir sıralama puanında birleştirmek için Bulanık Bileşik Sıralama Puanı (FCRS) olarak bilinen benzersiz bir toplama mekanizması geliştirilmiştir.Önerilen metodoloji, Konya Bilim Merkezi'nde (KSC) yedi tam zamanlı ve yedi yarı zamanlı adayın yedi kritere göre değerlendirildiği gerçek bir vaka çalışmasına uygulanmıştır. AHP yöntemi, tutarlılık oranı analizi ile doğrulanan uzman ikili karşılaştırmaları yoluyla her bir kriter için ağırlıklar türetmek için kullanılmıştır. Adayların uzman dilbilimsel değerlendirmeleri üçgen bulanık sayılara dönüştürülmüş ve Bulanık TOPSIS ve VIKOR modelleri aracılığıyla işlenmiştir. FCRS tarafından üretilen nihai sıralamalar, aralarındaki çelişkileri ele alırken bireysel yöntem sonuçlarıyla yüksek derecede uyum göstermiştir.Sonuçlar, önerilen hibrit çerçevenin karmaşık organizasyonel durumlarda incelikli, şeffaf ve sağlam personel seçim kararlarına olanak sağlayabileceğini göstermektedir. Model ölçeklenebilir ve belirsiz ortamlarda insan muhakemesini içeren çok çeşitli karar verme senaryolarına uyarlanabilir. CR - Abdulvahitoglu, A., & Kilic, M. (2022). A new approach for selecting the most suitable oilseed for biodiesel production; the integrated AHP-TOPSIS method. Ain Shams Engineering Journal, 13(3), 101604. https://doi.org/10.1016/j.asej.2021.10.002 CR - Aggarwal, A., Sharma, I., Kukreja, V., Verma, T., & Aggarwal, R. (2025). Assessing and ranking the skills required for IT personnel: a hybrid decision-making model using fuzzy AHP-TOPSIS. Global Knowledge, Memory and Communication, Vol. ahead-of-print No. ahead-of-print. https://doi.org/10.1108/GKMC-05-2024-0253 CR - Ayadi, H., Hamani, N., Kermad, L., & Mounir, B. (2021). Novel Fuzzy Composite Indicators for Locating a Logistics Platform under Sustainability Perspectives. Sustainability. https://doi.org/10.3390/su13073891 CR - Aytekin, A., Ecer, F., Korucuk, S., & Karamaşa, Ç. (2022). Global innovation efficiency assessment of EU member and candidate countries via DEA-EATWIOS multi-criteria methodology. Technology in Society, 68, 101896. https://doi.org/10.1016/j.techsoc.2022.101896 CR - Bakioglu, G., & Atahan, A. O. (2021). AHP integrated TOPSIS and VIKOR methods with Pythagorean fuzzy sets to prioritize risks in self-driving vehicles. Applied Soft Computing, 99, 106948. https://doi.org/10.1016/j.asoc.2020.106948 CR - Büyüközkan, G., & Çifçi, G. (2012). A novel hybrid MCDM approach based on fuzzy DEMATEL, fuzzy ANP and fuzzy TOPSIS to evaluate green suppliers. Expert Systems with Applications, 39(3), 3000–3011. https://doi.org/10.1016/j.eswa.2011.08.162 CR - Chen, C.-T. (2000). Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 114(1), 1–9. https://doi.org/10.1016/S0165-0114(97)00377-1 CR - Chen, S.-J., & Hwang, C.-L. (1992). Fuzzy Multiple Attribute Decision Making Methods. In S.-J. Chen & C.-L. Hwang (Eds.), Fuzzy Multiple Attribute Decision Making: Methods and Applications (pp. 289–486). Springer. https://doi.org/10.1007/978-3-642-46768-4_5 CR - Chung, C., Trinh, V., & Tran, N. (2024). An Integrated Approach of Fuzzy AHP-TOPSIS for Multi-Criteria Decision-Making in Industrial Robot Selection. Processes. https://doi.org/10.3390/pr12081723. CR - Daus, M., Weber, D., & Glaser, R. (2023). Application of Fuzzy Composite Programming in a Questionnaire as a Methodological Test to Study the Effect of Reservoir Management on Social Interests—A Survey Based on Two Case Studies in Southern Germany. Environmental Management, 71(6), 1145–1161. https://doi.org/10.1007/s00267-023-01799-9 CR - Dursun, M., & Karsak, E. (2010). A fuzzy MCDM approach for personnel selection. Expert Syst. Appl., 37, 4324–4330. https://doi.org/10.1016/j.eswa.2009.11.067 CR - Ertugrul Karsak, E. (2001). Personnel Selection Using a Fuzzy MCDM Approach Based on Ideal and Anti-ideal Solutions. In M. Köksalan & S. Zionts (Eds.), Multiple Criteria Decision Making in the New Millennium (pp. 393–402). Springer. https://doi.org/10.1007/978-3-642-56680-6_36 CR - Gottwald, D., Chocholáč, J., Kayacı Çodur, M., Čubranić-Dobrodolac, M., & Yazir, K. (2024). Z-Numbers-Based MCDM Approach for Personnel Selection at Institutions of Higher Education for Transportation. Mathematics, 12(4), Article 4. https://doi.org/10.3390/math12040523 CR - Govindan, K., Mina, H., Esmaeili, A., & Gholami-Zanjani, S. M. (2020). An Integrated Hybrid Approach for Circular supplier selection and Closed loop Supply Chain Network Design under Uncertainty. Journal of Cleaner Production, 242, 118317. https://doi.org/10.1016/j.jclepro.2019.118317 CR - Gul, M., & Guneri, A. F. (2016). A fuzzy multi criteria risk assessment based on decision matrix technique: A case study for aluminum industry. Journal of Loss Prevention in the Process Industries, 40, 89–100. https://doi.org/10.1016/j.jlp.2015.11.023 CR - Hu, J., Ma, J., & Zhu, G. (2022). A fuzzy rough number extended AHP and VIKOR for failure mode and effects analysis under uncertainty. Adv. Eng. Informatics, 51, 101454. https://doi.org/10.1016/j.aei.2021.101454. CR - Jain, V., Sangaiah, A. K., Sakhuja, S., Thoduka, N., & Aggarwal, R. (2018). Supplier selection using fuzzy AHP and TOPSIS: A case study in the Indian automotive industry. Neural Computing and Applications, 29(7), 555–564. https://doi.org/10.1007/s00521-016-2533-z CR - Kahraman, C., Cebeci, U., & Ruan, D. (2004). Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey. International Journal of Production Economics, 87(2), 171–184. https://doi.org/10.1016/S0925-5273(03)00099-9 CR - Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2021). Determination of Objective Weights Using a New Method Based on the Removal Effects of Criteria (MEREC). Symmetry, 13(4), Article 4. https://doi.org/10.3390/sym13040525 CR - Konacoglu, J., & Albayrak, I. (2018). A new fuzzy decision making approach for personnel selection problem. Intelligent Decision Technologies, 12(4), 471–482. https://doi.org/10.3233/IDT-180350 CR - Krishankumar, R., Premaladha, J., Ravichandran, K. S., Sekar, K. R., Manikandan, R., & Gao, X. Z. (2020). A novel extension to VIKOR method under intuitionistic fuzzy context for solving personnel selection problem. Soft Computing, 24(2), 1063–1081. https://doi.org/10.1007/s00500-019-03943-2 CR - Kurnia, D., Sudrajat, D., Rahaningsih, N., Rinaldi, A., & Pratama, F. (2019). The selection of candidate of call center operator 112 using analytical hierarchy process method. Journal of Physics: Conference Series, 1360, 012015. https://doi.org/10.1088/1742-6596/1360/1/012015 CR - Kusumawardani, R. P., & Agintiara, M. (2015). Application of Fuzzy AHP-TOPSIS Method for Decision Making in Human Resource Manager Selection Process. Procedia Computer Science, 72, 638–646. https://doi.org/10.1016/j.procs.2015.12.173 CR - Liou, J. J. H., & and Tzeng, G.-H. (2012). Comments on “Multiple criteria decision making (MCDM) methods in economics: An overview.” Technological and Economic Development of Economy, 18(4), 672–695. https://doi.org/10.3846/20294913.2012.753489 CR - Mathew, M., Chakrabortty, R. K., & Ryan, M. J. (2020). A novel approach integrating AHP and TOPSIS under spherical fuzzy sets for advanced manufacturing system selection. Engineering Applications of Artificial Intelligence, 96, 103988. https://doi.org/10.1016/j.engappai.2020.103988 CR - Milojkovic, I., & Prascevic, N. (2024). Project management using the developed AHP–VIKOR method with the fuzzy approach. Water Science and Technology, 90(2), 578–597. https://doi.org/10.2166/wst.2024.204 CR - Nalbant, K. G. (2025). An Application of the Interval Type-2 Fuzzy TOPSIS Method for the Selection of Project Managers. Engineering Management Journal, 1–14. https://doi.org/10.1080/10429247.2025.2492617 CR - Opricovic, S., & Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445–455. https://doi.org/10.1016/S0377-2217(03)00020-1 CR - Opricovic, S. (2011). Fuzzy VIKOR with an application to water resources planning. Expert Systems with Applications, 38(10), 12983–12990. https://doi.org/10.1016/j.eswa.2011.04.097 CR - Prusak, A. Strojny, J., Stefanów, P., & Machaj, K. (2015). The AHP-based assessment of public services with respect to different groups of customers of polish local government. Chinese Business Review, 14(11). https://doi.org/10.17265/1537-1506/2015.11.004 CR - Russo, R. de F. S. M., & Camanho, R. (2015). Criteria in AHP: A Systematic Review of Literature. Procedia Computer Science, 55, 1123–1132. https://doi.org/10.1016/j.procs.2015.07.081 CR - Saaty, T. L. (1980). The Analytic Hierarchy Process. McGraw–Hill. CR - Saaty, R. W. (1987). The analytic hierarchy process—What it is and how it is used. Mathematical Modelling, 9(3), 161–176. https://doi.org/10.1016/0270-0255(87)90473-8 CR - Salehi, K. (2016). An Integrated Approach of Fuzzy AHP and Fuzzy VIKOR for Personnel Selection Problem. Global Journal of Management Studies and Researches, 3(3), 89. CR - Samanlioglu, F., Taskaya, Y. E., Gulen, U. C., & Cokcan, O. (2018). A Fuzzy AHP–TOPSIS-Based Group Decision-Making Approach to IT Personnel Selection. International Journal of Fuzzy Systems, 20(5), 1576–1591. https://doi.org/10.1007/s40815-018-0474-7 CR - Savalan, Ş., & Rouyendegh, B. (2022). An Integrated Fuzzy MCDM Hybrid Methodology to Analyze Agricultural Production. Sustainability. https://doi.org/10.3390/su14084835. CR - Sequeira, M., Adlemo, A., & Hilletofth, P. (2023). A hybrid fuzzy-AHP-TOPSIS model for evaluation of manufacturing relocation decisions. Operations Management Research, 16(1), 164–191. https://doi.org/10.1007/s12063-022-00284-6 CR - Sharma, H., Singh, C., & Singh, K. (2024). Fuzzy TOPSIS and fuzzy VIKOR for parameter selection in technological competency. CR - Singh, V., Kumar, V., & Singh, V. B. (2023). A hybrid novel fuzzy AHP-TOPSIS technique for selecting parameter-influencing testing in software development. Decision Analytics Journal, 6, 100159. https://doi.org/10.1016/j.dajour.2022.100159 CR - Soner, O., Celik, E., & Akyuz, E. (2017). Application of AHP and VIKOR methods under interval type 2 fuzzy environment in maritime transportation. Ocean Engineering, 129, 107–116. https://doi.org/10.1016/j.oceaneng.2016.11.010 CR - Taylan, O., Alamoudi, R., Kabli, M., AlJifri, A., Ramzi, F., & Herrera-Viedma, E. (2020). Assessment of Energy Systems Using Extended Fuzzy AHP, Fuzzy VIKOR, and TOPSIS Approaches to Manage Non-Cooperative Opinions. Sustainability, 12(7), 2745. https://doi.org/10.3390/su12072745 CR - Tran, N.-T., Trinh, V.-L., & Chung, C.-K. (2024). An Integrated Approach of Fuzzy AHP-TOPSIS for Multi-Criteria Decision-Making in Industrial Robot Selection. Processes, 12(8), Article 8. https://doi.org/10.3390/pr12081723 CR - Vaidya, O. S., & Kumar, S. (2006). Analytic hierarchy process: An overview of applications. European Journal of Operational Research, 169(1), 1–29. https://doi.org/10.1016/j.ejor.2004.04.028 CR - Velmurugan, K., Saravanasankar, S., Venkumar, P., Sudhakarapandian, R., & Bona, G. D. (2022). Hybrid fuzzy AHP-TOPSIS framework on human error factor analysis: Implications to developing optimal maintenance management system in the SMEs. Sustainable Futures, 4, 100087. https://doi.org/10.1016/j.sftr.2022.100087 CR - Yazdani, M., Torkayesh, A., Stević, Ž., Chatterjee, P., Ahari, S., & Hernandez, V. (2021). An Interval Valued Neutrosophic Decision-Making Structure for Sustainable Supplier Selection. Expert Systems with Applications, 183, 115354. https://doi.org/10.1016/j.eswa.2021.115354 UR - https://dergipark.org.tr/tr/pub/umtd/issue//1722551 L1 - https://dergipark.org.tr/tr/download/article-file/4971679 ER -