TY - JOUR T1 - Exhaled Carbon Monoxide Measurement Errors: A Systematic Review of Causes and Solutions TT - Ekshale Edilen Karbon Monoksitin Ölçüm Hataları: Nedenler ve Çözümlerin Sistematik Bir Derlemesi AU - Fidancı, İzzet AU - Kızıltaş, Özlem PY - 2025 DA - September Y2 - 2025 DO - 10.17827/aktd.1732832 JF - Arşiv Kaynak Tarama Dergisi JO - aktd PB - Çukurova Üniversitesi WT - DergiPark SN - 1300-3755 SP - 184 EP - 194 VL - 34 IS - 3 LA - en AB - The review will discuss the various etiologies that lead to a faulty measurement using exhaled carbon monoxide devices, widely utilized in clinical settings, especially with smoking-cessation programs and the assessment of exposure to carbon monoxide (CO). These devices, though of paramount importance in monitoring CO levels, bear errors in measurement that may be immense in significance to clinical decisions and patient outcomes. Some of the other common reasons for faulty readings include calibration errors, different sensor technologies, humidity and temperature, poor breath sampling on the part of the users, and the ageing of devices. Even with an increase in the sensitivity of sensors, their performance can be influenced by both external and internal factors. Periodic recalibration of the devices, their proper use, and updating with advanced technologies are stressed in the review for error-free results. This would aid in overcoming most the problems with exhaled CO measurement devices and enhance their reliability, since continuous and accurate data would be provided for both clinical and emergency use. KW - carbon monoxide KW - breath tests KW - smoking KW - bias KW - outcome measurement errors N2 - Klinik ortamlarda, özellikle sigarayı bırakma programları ve karbon monoksit (CO) maruziyetinin değerlendirilmesinde yaygın olarak kullanılan ekshale edilen karbon monoksit cihazları kullanılarak yapılan hatalı ölçümlere yol açan çeşitli etiyolojiler bu derlemede ele alınacaktır. Bu cihazlarda, CO seviyelerinin izlenmesinde büyük önem taşısa da klinik kararlar ve hasta sonuçları açısından büyük önem taşıyabilecek ölçüm hataları olabilmektedir. Hatalı ölçümlerin yaygın nedenlerinden bazıları kalibrasyon hataları, farklı sensör teknolojileri, nem ve sıcaklık, kullanıcılar tarafından kötü nefes örneklemesi ve cihazların eskimesidir. Sensörlerin hassasiyetinde artış olsa bile, performansları hem dış hem de iç faktörlerden etkilenebilir. Hatasız sonuçlar için incelemede cihazların periyodik olarak yeniden kalibre edilmesi, uygun şekilde kullanılması ve gelişmiş teknolojilerle güncellenmesi vurgulanmaktadır. Bu, ekshale edilen CO ölçüm cihazlarıyla ilgili sorunların çoğunun üstesinden gelinmesine yardımcı olacak ve sürekli ve doğru veriler hem klinik hem de acil kullanım için sağlanacağından güvenilirliklerini artıracaktır. CR - 1. Ryter SW, Choi AM. Carbon monoxide in exhaled breath testing and therapeutics. J Breath Res. 2013;7(1):017111. CR - 2. Vreman HJ, Stevenson DK, Oh W, et al. Semiportable electrochemical instrument for determining carbon monoxide in breath. Clin Chem. 1994; 40(10):1927–33. CR - 3. Mahoney JJ, Vreman HJ, Stevenson DK, Van Kessel AL. Measurement of carboxyhemoglobin and total hemoglobin by five specialized spectrophotometers (CO-oximeters) in comparison with reference methods. Clin Chem. 1993;39(8):1693–700. CR - 4. Bailey SR, Russell EL, Martinez A. Evaluation of the AVOXimeter: precision, long-term stability, linearity, and use without heparin. J Clin Monit. 1997;13(3):191-8. CR - 5. Olson KN, Hillyer MA, Kloss JS, Geiselhart RJ, Apple FS. Accident or arson: is CO-oximetry reliable for carboxyhemoglobin measurement postmortem? Clin Chem. 2010; 56(4):515–9. CR - 6. PubMed®. National Library of Medicine. The United States National Library of Medicine (NLM). https://pubmed.ncbi.nlm.nih.gov (Accessed: 26 August 2025). CR - 7. Google Scholar. GOOGLE, Alphabet Inc. https://scholar.google.com.tr (Accessed: 26 August 2025). CR - 8. Cochrane Library: Cochrane reviews. Wiley. https://www.cochranelibrary.com. CR - 9. Web of Science™. Clarivate. https://www.webofscience.com/wos/woscc/basic-search (Accessed: 26 August 2025). CR - 10. Researchgate. © 2008-2025 ResearchGate GmbH. https://www.researchgate.net (Accessed: 26 August 2025). CR - 11. Ramieri A Jr, Jatlow P, Seligson D. New method for rapid determination of carboxyhemoglobin by double-wavelength spectrophotometry. Clin Chem. 1974; 20(2):278–81. CR - 12. Sato S, Nishimura K, Koyama H, et al. Optimal cutoff level of breath carbon monoxide for assessing smoking status. Chest 2003;124(5):1749-54. CR - 13. Wigfield DC, Hollebone BR, MacKeen JE, Selwin JC. Assessment of the methods available for the determination of carbon monoxide in blood. J Anal Toxicol. 1981;5(3):122–5. CR - 14. Widdop B. Analysis of carbon monoxide. Ann Clin Biochem. 2002;39(Pt 4):122–5. CR - 15. Miller MR, Hankinson J, Brusasco V, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319-38. CR - 16. Pickering TG, Hall JE, Appel LJ, et al. Recommendations for blood pressure measurement in humans and experimental animals: Part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Hypertension. 2005;45(1):142-61. CR - 17. Middleton ET, Morice AH. Breath carbon monoxide as an indication of smoking habit. Chest. 2000;117(3):758-63. CR - 18. Montuschi P, Kharitonov SA, Barnes PJ. Exhaled carbon monoxide and nitric oxide in COPD. Chest. 2001;120(2):496-501. CR - 19. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. Interpretative strategies for lung function tests. Eur Respir J. 2005;26(5):948-68. CR - 20. Högman M, Lafih J, Meriläinen P, Bröms K, Malinovschi A. Janson C. Extended NO analysis in a healthy subgroup of a random sample from a Swedish population. Clinical Physiology and Functional Imaging. 2009;29(1):18-23. UR - https://doi.org/10.17827/aktd.1732832 L1 - https://dergipark.org.tr/tr/download/article-file/5014847 ER -