TY - JOUR T1 - SkyServe AI - Data-Driven Solution to Optimize Airline Food Loading Processes TT - Havayolu Yemek Yükleme Süreçlerini Optimize Etmeye Yönelik Veri Odaklı Çözüm AU - Olca, Emre AU - Aşıroğlu, Mehmet PY - 2025 DA - September Y2 - 2025 DO - 10.61150/ijonfest.2025030204 JF - International Journal of New Findings in Engineering, Science and Technology JO - IJONFEST PB - İstanbul Gedik Üniversitesi WT - DergiPark SN - 3023-4379 SP - 136 EP - 147 VL - 3 IS - 2 LA - en AB - Air transportation is one of the fundamental elements of the global transportation network and plays an important role in both commercial and passenger transportations. The increasing number of passengers every day is leading airlines to seek more efficient and sustainable solutions in operational processes. The food supply process is a critical factor in maintaining passenger comfort and service quality, especially on long-haul flights. The amount and variety of food offered during the flight requires effective planning in terms of both customer satisfaction and operational efficiency. This research presents a data-driven approach to optimize food loading processes in the airline transportation sector. The main objective of the project is to increase operational efficiency, reduce costs and minimize food waste by predicting the amount of food required for flights. In the study, variables such as flight route, number of passengers, flight duration and total demand are considered and the effects of these factors on food consumption are analyzed. In the model development process, machine learning algorithms were applied using real flight data. The data set taken to train the model includes detailed information about approximately 180,000 flights. This data is divided into two as training and test sets in order to improve the learning ability of the model and increase the prediction accuracy. In order to evaluate the prediction performance of the model, comparisons were made with the real consumption values at the end of the flight. The accuracy rate of the developed model shows that the model has a general prediction ability according to the initial findings. The study has the potential to contribute to the improvement of food loading processes of airline companies with data-driven decisions. Development steps such as expanding the data set, model optimization and error analysis are suggested for higher accuracy rates. KW - Artificial Intelligence KW - Airline Catering Optimization KW - Food Supply Chain in Aviation KW - Machine Learning in Airline Operations N2 - Hava taşımacılığı, küresel ulaşım ağının temel unsurlarından biridir ve hem ticari hem de yolcu taşımacılığında önemli bir rol oynamaktadır. Her geçen gün artan yolcu sayısı, havayolu şirketlerini operasyonel süreçlerde daha verimli ve sürdürülebilir çözümler aramaya yöneltmektedir. Yemek tedarik süreci, özellikle uzun menzilli uçuşlarda yolcu konforunun ve hizmet kalitesinin korunmasında kritik bir faktördür. Uçuş sırasında sunulan yiyeceklerin miktarı ve çeşitliliği, hem müşteri memnuniyeti hem de operasyonel verimlilik açısından etkili bir planlama gerektirmektedir.Bu çalışma, havayolu taşımacılığı sektöründe yemek yükleme süreçlerini optimize etmeye yönelik veri odaklı bir yaklaşım sunmaktadır. Projenin temel amacı, uçuşlar için gereken yemek miktarını tahmin ederek operasyonel verimliliği artırmak, maliyetleri azaltmak ve gıda israfını en aza indirmektir. Çalışmada, uçuş rotası, yolcu sayısı, uçuş süresi ve toplam talep gibi değişkenler dikkate alınmakta ve bu faktörlerin yemek tüketimi üzerindeki etkileri analiz edilmektedir.Model geliştirme sürecinde, gerçek uçuş verileri kullanılarak makine öğrenmesi algoritmaları uygulanmıştır. Modelin eğitilmesinde kullanılan veri kümesi, yaklaşık 180.000 uçuşa ait detaylı bilgileri içermektedir. Bu veri, modelin öğrenme kabiliyetini artırmak ve tahmin doğruluğunu yükseltmek amacıyla eğitim ve test seti olarak ikiye ayrılmıştır.Modelin tahmin performansını değerlendirmek için uçuş sonunda elde edilen gerçek tüketim değerleriyle karşılaştırmalar yapılmıştır. Geliştirilen modelin doğruluk oranı, ilk bulgulara göre modelin genel bir tahmin yeteneğine sahip olduğunu göstermektedir. Bu çalışma, havayolu şirketlerinin yemek yükleme süreçlerini veri odaklı kararlarla iyileştirmeye katkı sunma potansiyeline sahiptir. Daha yüksek doğruluk oranları için veri kümesinin genişletilmesi, modelin optimize edilmesi ve hata analizleri gibi geliştirme adımları önerilmektedir. CR - [1] Laney, D. (2001). 3D data management: Controlling data volume, velocity, and variety. Gartner Research. CR - [2] Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute. CR - [3] Han, J., Kamber, M., & Pei, J. (2011). Data mining: Concepts and techniques (3rd ed.). Morgan Kaufman. CR - [4] Najafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R., & Muharemagic, E. (2015). Deep learning applications and challenges in big data analytics. Journal of Big Data, 2(1), Article 1. https://doi.org/10.1186/s40537-014-0007-7 CR - [5] LeCun, Y., Bengio, Y., & Hinton, G. (2015). deep learning Nature, 521(7553), 436–444. https://doi.org/10.1038/nature14539 CR - [6] Goodfellow, I., Bengio, Y., & Courville, A. (2016). deep learning MIT Press. CR - [7] American Airlines. (2019). Environmental, social and governance report. American Airlines Group. https://www.aa.com/ CR - [8] Airbus. (2022). Can the tracking of in-flight catering improve airline sustainability? airbus https://www.airbus.com/ CR - [9] Rugji, J., Smith, A., Patel, K., & Lee, T. (2024). Utilization of AI–reshaping the future of food safety, agriculture and food security: A critical review. Critical Reviews in Food Science and Nutrition. Advance online publication. CR - [10] Lin, Y., Zhang, X., Wang, J., & Chen, L. (2024). Fuel consumption prediction for pre departure flights using attention-based multi-modal fusion. Journal of Aerospace Information Systems. Advance online publication. CR - [11] Woodbury, T., & Srivastava, A. (2012). Analysis of virtual sensors for predicting aircraft fuel consumption. In Proceedings of the AIAA Infotech@Aerospace Conference. American Institute of Aeronautics and Astronautics. CR - [12] García Hernàndez, S. (2024). Development of predictive flight fuel consumption models (Master's thesis). Universitat Politècnica de Catalunya. https://upcommons.upc.edu/handle/2117/400745 CR - [13] Hast, M. (2019). Evaluation of machine learning algorithms for customer demand prediction of in-flight meals (Master's thesis, KTH Royal Institute of Technology). DiVA Portal. https://www.diva-portal.org/smash/get/diva2:1337269/FULLTEXT01.pdf CR - [14] Jadhav, A., & Jadhav, R. D. (2023). Machine learning for sales prediction in Big Mart. International Journal of Data Science and Big Data Analytics, 3(1), 58–62. https://www.svedbergopen.com/files/1719922056_%285%29_IJDSBDA202425113555IN_%28p_58-62%29.pdf CR - [15] Feizabadi, J. (2022). Machine learning demand forecasting and supply chain performance. International Journal of Logistics Research and Applications, 25(2), 119–142. https://doi.org/10.1080/13675567.2020.1803246 CR - [16] Awoke, H., Kassa, L., & Tesfa, T. (2024). In-flight sales prediction using machine learning. Irish Interdisciplinary Journal of Science & Research, 8(3), 39–55. https://doi.org/10.46759/IIJSR.2024.8305 CR - [17] https://medium.com/@tam_vit/the-math-fuelling-the-machines-essential-mathematics-for-machine-learning-bf5fd7480eb7 CR - [18]https://medium.com/@pratishtha013/random-forest-classification-26d63cc74c3a UR - https://doi.org/10.61150/ijonfest.2025030204 L1 - https://dergipark.org.tr/tr/download/article-file/5021241 ER -