TY - JOUR T1 - Effects of different calcium concentrations on in vitro shoot and root development in Gök Üzüm (Vitis vinifera L.) cultivar TT - Gök Üzüm (Vitis vinifera L.) çeşidinde in vitro sürgün ve kök gelişimine farklı kalsiyum konsantrasyonlarının etkisi AU - Yazar, Kevser PY - 2025 DA - September Y2 - 2025 DO - 10.29050/harranziraat.1735223 JF - Harran Tarım ve Gıda Bilimleri Dergisi PB - Harran Üniversitesi WT - DergiPark SN - 2587-1358 SP - 577 EP - 589 VL - 29 IS - 3 LA - en AB - In this study, the effects of different calcium (CaCl₂·2H₂O) concentrations on shoot development, shoot tip necrosis (STN), and rooting were investigated in the Gök Üzüm (Vitis vinifera L.) cultivar under in vitro conditions. During the first subculture, although shoot formation was promoted in the 1 mg L⁻¹ BAP treatment, the STN rate was found to be high. Culture media containing 120, 180 and 240.0 mg L⁻¹ CaCl₂·2H₂O provided significant increases in parameters such as shoot length, number of nodes and leaf area compared to MS and BAP media. In addition, STN formation was completely eliminated at 180 and 240.0 mg L⁻¹ calcium levels. The hormone-free MS0 medium gave the lowest values in all parameters. The suppression of STN was associated with the stabilizing effect of Ca²⁺ ions on the cell wall and the maintenance of plasma membrane integrity. In addition, Ca²⁺ plays an important role as a signaling element in plant physiology and influences hormonal regulations, particularly those related to auxin transport. During the rooting the highest root fresh weight was obtained with 240 mg L⁻¹ CaCl₂·2H₂O, indicating the contribution of calcium to root tissue development and integrity. The findings revealed that calcium enhances plantlet quality both morphologically and physiologically. Consequently, culture media enriched with 180–240 mg L⁻¹ CaCl₂·2H₂O have the potential to increase the efficiency of grapevine micropropagation by promoting shoot development, reducing STN, and supporting root formation. Further studies are recommended to comprehensively evaluate the roles of different calcium sources and application strategies in plant tissue culture. KW - Micropropagation KW - calcium KW - shoot tip necrosis KW - shoot development KW - plantlet quality N2 - Bu çalışma kapsamında, Gök Üzüm (Vitis vinifera L.) çeşidinde in vitro koşullarda farklı kalsiyum (CaCl₂·2H₂O) konsantrasyonlarının sürgün gelişimi, sürgün ucu nekrozu (STN) ve köklenme üzerine etkileri araştırılmıştır. Birinci altkültür aşamasında, 1 mg L⁻¹ BAP uygulamasında sürgün oluşumunun teşvik edilmesine rağmen STN oranı yüksek bulunmuştur. 120, 180 ve 240.0 mg L⁻¹ CaCl₂·2H₂O içeren kültür ortamları ise; sürgün uzunluğu, boğum sayısı ve yaprak alanı gibi parametrelerde MS ve BAP ortamlarına göre anlamlı artış sağlamıştır. Ayrıca, 180 ve 240.0 mg L⁻¹ kalsiyum düzeylerinde STN oluşumu tamamen ortadan kalkmıştır. Hormon içermeyen MS0 ortamı ise tüm parametrelerde en düşük değerleri vermiştir. STN’nin baskılanması, Ca²⁺ iyonunun hücre duvarı stabilitesi ile plazma membranı bütünlüğünü koruyucu etkisiyle ilişkilendirilmiştir. Bunun yanında, Ca²⁺ bitki fizyolojisinde önemli bir sinyal iletim elemanı olarak görev yapmakta ve özellikle oksin taşınımıyla ilişkili hormonal düzenlemeleri etkilemektedir. Köklenme aşamasında ise 240 mg L⁻¹ CaCl₂·2H₂O dozunda en yüksek kök ağırlığı elde edilmiş; bu da kalsiyumun kök dokularının gelişimi ve bütünlüğüne katkı sağladığını göstermiştir. Elde edilen bulgular, kalsiyumun hem morfolojik hem de fizyolojik açıdan bitkicik kalitesini artırdığını ortaya koymaktadır. Sonuç olarak, 180–240 mg L⁻¹ CaCl₂·2H₂O içeren kültür ortamlarının sürgün gelişimini teşvik ederek, STN’yi azaltarak ve kök gelişimini destekleyerek asma mikroçoğaltımında verimliliği artırma potansiyeline sahip olduğu kaydedilmiştir. Gelecek çalışmalarda, farklı kalsiyum kaynaklarının ve uygulama stratejilerinin bitki doku kültürü süreçlerindeki rolünün daha kapsamlı biçimde değerlendirilmesi önerilmektedir. CR - Ahmed, Z. F. R., & Palta, J. P. (2017). Hormone-like action of a natural lipid, lysophosphatidylethanolamine: A comparison with auxin. Acta Horticulturae, 1187, 107–114. DOI: https://doi.org/10.17660/ActaHortic.2017.1187.13 CR - Al-Aizari, A. A., Al-Obeed, R. S., & Mohamed, M. A. (2020). Improving micropropagation of some grape cultivars via boron, calcium and phosphate. Electronic Journal of Biotechnology, 48, 95–100. DOI: https://doi.org/10.1016/j.ejbt.2020.10.001 CR - Bairu, M. W., Stirk, W. A., & Van Staden, J. (2009). Factors contributing to in vitro shoot-tip necrosis and their physiological interactions. Plant Cell, Tissue and Organ Culture, 98, 239–248. DOI: https://doi.org/10.1007/s11240-009-9560-8 CR - Barghchi, M., & Alderson, P. G. (1996). The control of shoot tip necrosis in Pistacia vera L. in vitro. Plant Growth Regulation, 20, 31–35. DOI: https://doi.org/10.1007/BF00024054 CR - Dias, M. C., Pinto, G., Correia, C. M., Moutinho-Pereira, J., Silva, S., & Santos, C. (2013). Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization. Biologia Plantarum, 57, 33–40. DOI: https://doi.org/10.1007/s10535-012-0234-8 CR - de Freitas, S. T., Handa, A. K., Wu, Q., Park, S., & Mitcham, E. J. (2012). Role of pectin methylesterases in cellular calcium distribution and blossom-end rot development in tomato fruit. The Plant Journal, 71(5), 824–835. DOI: https://doi.org/10.1111/j.1365-313X.2012.05034.x CR - Ekinci, H., Rastgeldi, İ., Şaşkın, N., Ak, B. E., & Korkmaz, Ş. (2024). Evaluation of performance of different culture media in in vitro shoot propagation of local grape varieties. Applied Fruit Science, 66(2), 641–648. DOI: https://doi.org/10.1007/s10341-023-00993-7 CR - FAO. (2023). FAOSTAT: Statistics database. Food and Agriculture Organization of the United Nations. Retrieved July 4, 2025, from https://www.fao.org/faostat CR - Gammoudi, N., Nagaz, K., & Ferchichi, A. (2022). Establishment of optimized in vitro disinfection protocol of Pistacia vera L. explants mediated a computational approach: Multilayer perceptron–multi-objective genetic algorithm. BMC Plant Biology, 22(1), 324. DOI: https://doi.org/10.1186/s12870-022-03674-x CR - Gomes, H. T., Bartos, P. M. C., & Scherwinski-Pereira, J. E. (2015). Optimizing rooting and survival of oil palm (Elaeis guineensis) plantlets derived from somatic embryos. In Vitro Cellular & Developmental Biology - Plant, 51, 111–117. DOI: https://doi.org/10.1007/s11627-015-9669-x CR - Dutt, M., Gray, D. J., Li, Z. T., Dhekney, S. A., & Aman, M. M. V. (2006). Micropropagation cultures for genetic transformation of grapevine. HortScience, 41(4), 972C–972C. DOI: https://doi.org/10.21273/HORTSCI.41.4.972C CR - Hepler, P. K. (2005). Calcium: A central regulator of plant growth and development. The Plant Cell, 17(8), 2142–2155. DOI: https://doi.org/10.1105/tpc.105.032508 CR - Hirschi, K. D. (2004). The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiology, 136(1), 2438–2442. DOI: https://doi.org/10.1104/pp.104.046490 CR - Kadota, M., & Niimi, Y. (2003). Effects of cytokinin types and their concentrations on shoot proliferation and hyperhydricity in in vitro pear cultivar shoots. Plant Cell, Tissue and Organ Culture, 72, 261–265. DOI: https://doi.org/10.1023/A:1022378511659 CR - Kara, Z., & Yazar, K. (2020). Bazı üzüm çeşitlerinde in vitro poliploidi uyarımı. Anadolu Tarım Bilimleri Dergisi, 35(3), 410–418. DOI: https://doi.org/10.7161/omuanajas.768710 CR - Kara, Z., Sabır, A., Doğan, O., & Eker, Ö. (2016). ‘Gök üzüm’ (Vitis vinifera L.) çeşidinin ticari potansiyeli ve ampelografik özellikleri. Nevşehir Bilim ve Teknoloji Dergisi, 5, 395–410. DOI: https://doi.org/10.17100/nevbiltek.211038 CR - Kara, Z., Sabır, A., Yazar, K., Doğan, O., & Khaleel, A. J. K. (2017). Fertilization biology of ancient grapevine variety ‘Ekşi Kara’ (Vitis vinifera L.). Selcuk Journal of Agriculture and Food Sciences, 31(2), 92–97. DOI: https://doi.org/10.15316/SJAFS.2017.25 CR - Kassa, G., & Feyissa, T. (2020). In vitro propagation of two grapevine (Vitis vinifera L.) cultivars under conditions of salt stress. Plant Tissue Culture and Biotechnology, 30(1), 47–56. DOI: https://doi.org/10.3329/ptcb.v30i1.47790 CR - Martin, K. P., Zhang, C. L., Slater, A., & Madassery, J. (2007). Control of shoot necrosis and plant death during micro-propagation of banana and plantains (Musa spp.). Plant Cell, Tissue and Organ Culture, 88, 51–59. DOI: https://doi.org/10.1007/s11240-006-9177-0 CR - Naaz, A., Shahzad, A., & Anis, M. (2014). Effect of adenine sulphate interaction on growth and development of shoot regeneration and inhibition of shoot tip necrosis under in vitro condition in adult Syzygium cumini L. A multipurpose tree. Applied Biochemistry and Biotechnology, 173, 90–102. DOI: https://doi.org/10.1007/s12010-014-0797-2 CR - OIV. (2023). International Organisation of Vine and Wine - State of the Vitiviniculture World Market. https://www.oiv.int CR - Ozgen, S., Busse, J. S., & Palta, J. P. (2011). Influence of root zone calcium on shoot tip necrosis and apical dominance of potato shoot: Simulation of this disorder by ethylene glycol tetra acetic acid and prevention by strontium. HortScience, 46(10), 1358–1362. DOI: https://doi.org/10.21273/HORTSCI.46.10.1358 CR - Piagnani, C., Zocchi, G., & Mignani, I. (1996). Influence of Ca²⁺ and 6-benzyladenine on chestnut (Castanea sativa Mill.) in vitro shoot-tip necrosis. Plant Science, 118, 89–95. DOI: https://doi.org/10.1016/0168-9452(96)04423-8 CR - Sağlam, H., Çalkan Sağlam, Ö., Güler, E., Akbaş, B., & Güner, Ü. (2023). European and American grapevines were successfully recovered from GFkV, GLRaV1, GLRaV2, and GLRaV3 viruses by a modified thermotherapy and shoot tip culture. Phytoparasitica, 51(4), 855–864. https://doi.org/10.1007/s12600-023-01101-x CR - Srivastava, A., & Joshi, A. G. (2013). Control of shoot tip necrosis in shoot cultures of Portulaca grandiflora Hook. Notulae Scientia Biologicae, 5(1), 45–49. DOI: https://doi.org/10.15835/nsb519009 CR - Surakshitha, N. C., Soorianathasundaram, K., Ganga, M., & Raveendran, M. (2019). Alleviating shoot tip necrosis during in vitro propagation of grape cv. Red Globe. Scientia Horticulturae, 248, 118–125. DOI: https://doi.org/10.1016/j.scienta.2019.01.013 CR - Teixeira da Silva, J. A., & Dobránszki, J. (2013). How timing of sampling can affect the outcome of the quantitative assessment of plant organogenesis. Scientia Horticulturae, 159, 59–66. DOI: https://doi.org/10.1016/j.scienta.2013.05.001 CR - Teixeira da Silva, J. A., Nezami-Alanagh, E., Barreal, M. E., Kher, M. M., Wicaksono, A., Gulyás, A., Hidvégi, N., Magyar-Tábori, K., Mendler-Drienyovszki, N., & Márton, L. (2020). Shoot tip necrosis of in vitro plant cultures: A reappraisal of possible causes and solutions. Planta, 252, 1–35. DOI: https://doi.org/10.1007/s00425-020-03449-4 CR - Thakur, A., & Kanwar, J. S. (2011). Effect of phase of medium, growth regulators and nutrient supplementations on in vitro shoot-tip necrosis in pear. New Zealand Journal of Crop and Horticultural Science, 39, 131–140. DOI: https://doi.org/10.1080/01140671.2011.559254 CR - Vanneste, S., & Friml, J. (2013). Calcium: The missing link to auxin action. Plants, 2, 650–675. DOI: https://doi.org/10.3390/plants2040650 CR - White, P. J., & Broadley, M. R. (2003). Calcium in plants. Annals of Botany, 92, 487–511. DOI: https://doi.org/10.1093/aob/mcg164 UR - https://doi.org/10.29050/harranziraat.1735223 L1 - https://dergipark.org.tr/tr/download/article-file/5024644 ER -