TY - JOUR T1 - CHLORELLA VULGARİS UYGULAMASININ FARKLI TAHIL TÜRLERİNDE MORFOLOJİK PARAMETRELER ÜZERİNE ETKİSİ TT - The Effect of Chlorella vulgaris Application on Morphological Parameters in Different Cereal Species AU - Razzaghi, Somayyeh AU - Kılıç, Fatma Nur AU - Durmaz, Tamer PY - 2025 DA - September Y2 - 2025 JF - Wheat Studies PB - Bahri Dağdaş Uluslararası Tarımsal Araştırma Enstitüsü WT - DergiPark SN - 3023-8765 SP - 11 EP - 21 VL - 14 IS - 1 LA - tr AB - Dünya çapında artan gıda talebi nedeniyle, tahıl üretiminde sürdürülebilir ve çevre dostu uygulamalara olan ihtiyaç giderek önem kazanmaktadır. Bu çalışma, Chlorella vulgaris mikroalginin arpa (Hordeum vulgare), buğday (Triticum aestivum) ve yulaf (Avena sativa) bitkilerinde morfolojik gelişim parametreleri üzerindeki etkilerini değerlendirmek amacıyla yürütülmüştür. Denemede Chlorella vulgaris 1g kg-1 dozunda arpa, buğday ve yulaf bitkisine topraktan uygulanmıştır. Elde edilen bulgulara göre, Chlorella vulgaris uygulaması bütün çeşitlerde bitki boyunu anlamlı düzeyde artırmıştır. Bitki boyu, arpa için %8.69, buğday için %39.25 ve yulaf için %12.42 oranında artmıştır. Benzer şekilde, kök uzunluğu arpa, buğday ve yulaf bitkilerinde sırasıyla %45.5, %23.08 ve %26.52 oranlarında artmıştır. Bitki yaş ağırlığında ise arpa için %25,14, buğday için %37.48 ve yulaf için %47.06 oranlarında artış belirlenmiştir. Uygulama ayrıca bitki kuru ağırlığını da önemli ölçüde artırmış, buğday, arpa ve yulaf bitkilerinde sırasıyla %43.24, %26.74, ve %20.18 oranlarında yükselme sağlamıştır. Kök yaş ağırlığında ise sırasıyla %18.75 (arpa), %19.11 (buğday) ve %25.67 (yulaf) oranlarında artış sağlanmıştır. Kök kuru ağırlığında bu artışlar sırasıyla %20.10 (arpa), %19.66 (buğday) ve %23.05 (yulaf) olarak ölçülmüştür. Sonuç olarak bulgular, Chlorella vulgaris’in sürgün ve kök aksamında biyokütle artışını desteklediğini göstermekte, mikroalglerin toprakla doğrudan uygulanmasının bitki gelişimini destekleyebileceğini ve biyogübre olarak uygulanmasının sürdürülebilir tarıma katkı sağlayabileceğini ortaya koymaktadır. KW - Tahıl KW - mikroalg KW - Chlorella vulgaris KW - biyostimülan KW - buğday N2 - Due to the increasing global demand for food, the need for sustainable and environmentally friendly practices in cereal production is becoming increasingly important. This study was conducted to evaluate the effects of the microalga Chlorella vulgaris on the morphological development parameters of barley (Hordeum vulgare), wheat (Triticum aestivum), and oat (Avena sativa) plants. In the experiment, Chlorella vulgaris was applied to the soil at a dose of 1 g kg⁻¹ for each plant species. The findings revealed that Chlorella vulgaris application significantly increased plant height in all varieties: by 8.69% in barley, 39.25% in wheat, and 12.42% in oats. Similarly, root length increased by 45.5% in barley, 23.08% in wheat, and 26.52% in oats. Fresh plant weight increased by 25.14% in barley, 37.48% in wheat, and 47.06% in oats. The application also significantly enhanced dry plant weight, with increases of 43.24% in wheat, 26.74% in barley, and 20.18% in oats. Root fresh weight increased by 18.75% (barley), 19.11% (wheat), and 25.67% (oats), while root dry weight increased by 20.10%, 19.66%, and 23.05%, respectively. In conclusion, the results indicate that Chlorella vulgaris supports biomass growth in both shoot and root systems. These findings suggest that direct soil application of microalgae can promote plant development and that its use as a biofertilizer could contribute to sustainable agriculture. CR - Alkharabsheh, H. M., Seleiman, M. F., Hewedy, O. A., Battaglia, M. L., Jalal, R. S., Alhammad, B. A., ... & Al-Doss, A. (2021). Field crop responses and management strategies to mitigate soil salinity in modern agriculture: A review. Agronomy, 11(11), 2299. https://doi.org/10.3390/agronomy11112299 CR - Alvarez, A. L., Weyers, S. L., Goemann, H. M., Peyton, B. M., & Gardner, R. D. (2021). Microalgae, soil and plants: A critical review of microalgae as renewable resources for agriculture. Algal Research, 54, 102200. https://doi.org/10.1016/j.algal.2021.102200 CR - Andersen, R. A. (2013). The microalgal cell. Handbook of microalgal culture: applied phycology and biotechnology, 1-20. https://doi.org/10.1002/9781118567166.ch1 CR - Barone, V., Baglieri, A., Stevanato, P., Broccanello, C., Bertoldo, G., Bertaggia, M., ... & Concheri, G. (2018). Root morphological and molecular responses induced by microalgae extracts in sugar beet (Beta vulgaris L.). Journal of Applied Phycology, 30, 1061-1071.https://doi.org/10.1007/s10811-017-1283-3 CR - Bouyoucos, G.J. (1951). A Recalibration of the hydrometer method for making mechanical analysis of soils 1. Agronomy Journal, 43 (9), 434- 438.https://doi.org/10.2134/agronj1951.00021962004300090005x CR - Chamizo, S., Mugnai, G., Rossi, F., Certini, G., & De Philippis, R. (2018). Cyanobacteria inoculation improves soil stability and fertility on different textured soils: gaining insights for applicability in soil restoration. Frontiers in Environmental Science, 6, 49. https://doi.org/10.3389/fenvs.2018.00049 CR - Coppens, J., Grunert, O., Van Den Hende, S., Vanhoutte, I., Boon, N., Haesaert, G., & De Gelder, L. (2016). The use of microalgae as a high-value organic slow-release fertilizer results in tomatoes with increased carotenoid and sugar levels. Journal of applied phycology, 28, 2367-2377. https://doi.org/10.1007/s10811-015-0775-2 CR - Dineshkumar, R., Subramanian, J., Arumugam, A., Ahamed Rasheeq, A., & Sampathkumar, P. (2020). Exploring the microalgae biofertilizer effect on onion cultivation by field experiment. Waste and Biomass Valorization, 11, 77-87. https://doi.org/10.1007/s12649-018-0466-8 CR - Du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia horticulturae, 196, 3-14.https://doi.org/10.1016/j.scienta.2015.09.021 CR - Elarroussi, H., Elmernissi, N., Benhima, R., El Kadmiri, I. M., Bendaou, N., Smouni, A., & Wahby, I. (2016). Microalgae polysaccharides a promising plant growth biostimulant. J. Algal Biomass Utln, 7(4), 55-63. CR - El-Shazoly, R. M., Aloufi, A. S., & Fawzy, M. A. (2025). The potential use of arthrospira (Spirulina platensis) as a biostimulant for drought tolerance in wheat (Triticum aestivum L.) for sustainable agriculture. Journal of Plant Growth Regulation, 44(2), 686-703. https://doi.org/10.1007/s00344-024-11473-x CR - Faheed, F. A., & El-Fattah, Z. A. (2008). Effect of Chlorella vulgaris as bio-fertilizer on growth parameters and metabolic aspects of lettuce plant. CR - Gheda, S. F., & Ahmed, D. A. (2015). Improved soil characteristics and wheat germination as influenced by inoculation of Nostoc kihlmani and Anabaena cylindrica. Rendiconti Lincei, 26, 121-131. https://doi.org/10.1007/s12210-014-0351-8 CR - Gitau, M. M., Farkas, A., Balla, B., Ördög, V., Futó, Z., & Maróti, G. (2021). Strain-specific biostimulant effects of Chlorella and Chlamydomonas green microalgae on Medicago truncatula. Plants, 10(6), 1060. https://doi.org/10.3390/plants10061060 CR - Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., ... & Toulmin, C. (2010). Food security: the challenge of feeding 9 billion people. science, 327(5967), 812-818.https://doi.org/10.1126/science.1185383 CR - Kapoore, R. V., Wood, E. E., & Llewellyn, C. A. (2021). Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnology Advances, 49, 107754. https://doi.org/10.1016/j.biotechadv.2021.107754 CR - Karthikeyan, N., Prasanna, R., Nain, L., & Kaushik, B. D. (2007). Evaluating the potential of plant growth promoting cyanobacteria as inoculants for wheat. European Journal of Soil Biology, 43(1), 23-30.https://doi.org/10.1016/j.ejsobi.2006.11.001 CR - La Bella, E., Baglieri, A., Rovetto, E. I., Stevanato, P., & Puglisi, I. (2021). Foliar spray application of Chlorella vulgaris extract: Effect on the growth of lettuce seedlings. Agronomy, 11(2), 308. https://doi.org/10.3390/agronomy11020308 CR - Mazepa, E., Malburg, B. V., Mógor, G., de Oliveira, A. C., Amatussi, J. O., Corrêa, D. O., ... & Noseda, M. D. (2021). Plant growth biostimulant activity of the green microalga Desmodesmus subspicatus. Algal Research, 59, 102434. https://doi.org/10.1016/j.algal.2021.102434 CR - McLean, E., 1982. Soil pH and Lime Requirement, Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (methodsofsoilan2), 199-224. https://doi.org/10.2134/agronmonogr9.2.2ed.c12 CR - Minaoui, F., Hakkoum, Z., Chabili, A., Douma, M., Mouhri, K., & Loudiki, M. (2024). Biostimulant effect of green soil microalgae Chlorella vulgaris suspensions on germination and growth of wheat (Triticum aestivum var. Achtar) and soil fertility. Algal Research, 82, 103655. https://doi.org/10.1016/j.algal.2024.103655 CR - Moon, J., Park, Y. J., Choi, Y. B., Truong, T. Q., Huynh, P. K., Kim, Y. B., & Kim, S. M. (2024). Physiological Effects and Mechanisms of Chlorella vulgaris as a Biostimulant on the Growth and Drought Tolerance of Arabidopsis thaliana. Plants, 13(21), 3012. https://doi.org/10.3390/plants13213012 CR - Nelson, D.W., Sommers, L.E. (1996). Total carbon, organic carbon, and organic matter. Methods of Soil Analysis, Part 3—Chemical Methods, 961-1010. https://doi.org/10.2136/sssabookser5.3.c34 CR - Nelson, R., (1982), Carbonate and Gypsum, Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties (methodsofsoilan2), 181-197. https://doi.org/10.2134/agronmonogr9.2.2ed.c11 Kacar B., İnal, A., 2008. Bitki Analizleri. Nobel Yayınları, Ankara CR - Olsen, L.E., Sommers, S.R. (1982). Phosphorus, methods of soil analysis, Part 2. Chemical and Microbiological Properties, Agronomy Monograph, Second Edition. No.9, 403-430. https://doi.org/10.2134/agronmonogr9.2.2ed.c24 CR - Park, Y. J., Park, J. E., Truong, T. Q., Koo, S. Y., Choi, J. H., & Kim, S. M. (2022). Effect of Chlorella vulgaris on the growth and phytochemical contents of “Red Russian” kale (Brassica napus var. Pabularia). Agronomy, 12(9), 2138. https://doi.org/10.3390/agronomy12092138 CR - Prasanna, R., Sood, A., Ratha, S. K., & K. Singh, P. (2014). Cyanobacteria as a “green” option for sustainable agriculture. Cyanobacteria: an economic perspective, 145-166. https://doi.org/10.1002/9781118402238.ch9 CR - Puglisi, I., La Bella, E., Rovetto, E. I., Stevanato, P., Fascella, G., & Baglieri, A. (2022). Morpho-biometric and biochemical responses in lettuce seedlings treated by different application methods of Chlorella vulgaris extract: foliar spray or root drench?. Journal of Applied Phycology, 34(2), 889-901. https://doi.org/10.1007/s10811-021-02671-1 CR - Razzaghi, S. (2024). Alg/Yosun gübresi. Editors Çağdaş Akpinar. Academician Publishing House, Ankara, Türkiye, 143-182. https://doi.org/10.37609/akya.3249 CR - Razzaghi, S. (2025). Soil moisture deficit drives assimilate remobilization and grain yield variability in bread wheat genotypes International Journal of Agriculture, Environment and Food Sciences, 529-538(2), 529-538. https://doi.org/10.31015/2025.2.26 CR - Refaay, D. A., El-Marzoki, E. M., Abdel-Hamid, M. I., & Haroun, S. A. (2021). Effect of foliar application with Chlorella vulgaris, Tetradesmus dimorphus, and Arthrospira platensis as biostimulants for common bean. Journal of Applied Phycology, 33, 3807-3815. https://doi.org/10.1007/s10811-021-02584-z CR - Renuka, N., Guldhe, A., Prasanna, R., Singh, P., & Bux, F. (2018). Microalgae as multi-functional options in modern agriculture: current trends, prospects and challenges. Biotechnology advances, 36(4), 1255-1273.https://doi.org/10.1016/j.biotechadv.2018.04.004 CR - Ronga, D., Biazzi, E., Parati, K., Carminati, D., Carminati, E., & Tava, A. (2019). Microalgal biostimulants and biofertilisers in crop productions. Agronomy, 9(4), 192. https://doi.org/10.3390/agronomy9040192 CR - Rouphael, Y., & Colla, G. (2020). Biostimulants in agriculture. Frontiers in plant science, 11, 40. https://doi.org/10.3389/fpls.2020.00040 CR - Shariatmadari, Z., Riahi, H., Abdi, M., Hashtroudi, M. S., & Ghassempour, A. R. (2015). Impact of cyanobacterial extracts on the growth and oil content of the medicinal plant Mentha piperita L. Journal of Applied Phycology, 27, 2279-2287.https://doi.org/10.1007/s10811-014-0512-2 CR - Sido, M. Y., Tian, Y., Wang, X., & Wang, X. (2022). Application of microalgae Chlamydomonas applanata M9V and Chlorella vulgaris S3 for wheat growth promotion and as urea alternatives. Frontiers in Microbiology, 13, 1035791.https://doi.org/10.3389/fmicb.2022.1035791 CR - Snedecor, G. W., and Cochran, W. G. (1967). Statistical Methods (6th ed.). Iowa State University. Tian, S. L., Khan, A., Zheng, W. N., Song, L., Liu, J. H., Wang, X. Q., & Li, L. (2022). Effects of Chlorella extracts on growth of Capsicum annuum L. seedlings. Scientific Reports, 12(1), 15455. https://doi.org/10.1038/s41598-022-19846-6 CR - TUIK (2024). Bitkisel Üretim İstatistikleri. https://data.tuik.gov.tr/Bulten/Index?p=Bitkisel-Uretim-2.Tahmini-2024-53448. (Erişim tarihi: 05.07.2025). CR - Wang, J., Vanga, S. K., Saxena, R., Orsat, V., & Raghavan, V. (2018). Effect of climate change on the yield of cereal crops: A review. Climate, 6(2), 41. https://doi.org/10.3390/cli6020041 CR - Wang, R., Peng, B., & Huang, K. (2015). The research progress of CO2 sequestration by algal bio-fertilizer in China. Journal of CO2 Utilization, 11, 67-70. https://doi.org/10.1016/j.jcou.2015.01.007 CR - Wang, S. N., Ge, S. H., Zhuang, L. L., & Zhang, J. (2024). Multiple pathways for the enhancement of wheat growth by Chlorella vulgaris. Journal of Plant Growth Regulation, 43(2), 550-562. https://doi.org/10.1007/s00344-023-11113-w CR - Zörb, C., Ludewig, U., & Hawkesford, M. J. (2018). Perspective on wheat yield and quality with reduced nitrogen supply. Trends in plant science, 23(11), 1029-1037. https://doi.org/10.1016/j.tplants.2018.08.012 UR - https://dergipark.org.tr/tr/pub/wsj/issue//1741534 L1 - https://dergipark.org.tr/tr/download/article-file/5051728 ER -