TY - JOUR T1 - Betulinic Acid Induces Apoptosis and G2/M Cell Cycle Arrest in SH-SY5Y Neuroblastoma Cells via EAG1 Suppression TT - Betülinik asit EAG1 Baskılanması Yoluyla SH-SY5Y Nöroblastom Hücrelerinde Apoptoz ve G2/M Hücre Döngüsü Durmasını İndükler AU - Çarhan, Ahmet AU - Yalçınkaya, Tuğba AU - Kaya, Şeyda AU - Yildiz, Hatice Kubra PY - 2025 DA - August Y2 - 2025 DO - 10.29058/mjwbs.1743485 JF - Medical Journal of Western Black Sea JO - Med J West Black Sea PB - Zonguldak Bülent Ecevit Üniversitesi WT - DergiPark SN - 2822-4302 SP - 274 EP - 284 VL - 9 IS - 2 LA - en AB - Aim: Neuroblastoma is the most common extracranial solid tumour in children and is associated with high mortality, particularly in advancedstages. Given the limitations of current treatment approaches, such as recurrence and drug resistance, novel agents with tumour-specificeffects and minimal toxicity to normal cells are needed. Betulinic Acid (BA), a naturally occurring pentacyclic triterpene, has gained attentiondue to its selective antitumor properties.Material and Methods: This study investigated the cytotoxic and molecular effects of BA on SH-SY5Y neuroblastoma and epithelialcell lines, Vero. Cell viability was assessed using the MTT assay. Microscopic observations were conducted to evaluate morphologicalchanges. Quantitative real-time PCR (qPCR) was performed to analyse the gene expression changes associated with apoptosis (Bax, Bcl-2,Caspase-3, p53, p21) and the cell cycle (CDK1, Cyclin B1, Ki-67, EAG1).Results: BA significantly reduced cell viability in both cell lines in a time- and dose-dependent manner, with SH-SY5Y cells showing greatersensitivity (IC₅₀=75 μM at 48 hours). Morphological changes such as cell shrinkage and reduced cell density were more pronounced inSH-SY5Y cells. In this cell line, BA treatment significantly upregulated pro-apoptotic genes (Bax, Caspase-3, p53, p21) and downregulatedanti-apoptotic and proliferation-related genes (Bcl-2, CDK1, Cyclin B1, Ki-67, EAG1) (p KW - Betulinic acid KW - neuroblastoma KW - SH-SY5Y KW - apoptosis KW - cell cycle KW - EAG1 N2 - Amaç: Nöroblastoma, çocuklarda en sık görülen ekstrakraniyal solid tümör olup özellikle ileri evrelerde yüksek mortaliteye sahiptir.Tekrarlama ve ilaç direnci gibi mevcut tedavi yöntemlerinin sınırlılıkları nedeniyle, tümöre özgü etkisi yüksek ve normal hücrelere minimumtoksisite gösteren yeni ajanlara ihtiyaç vardır. Doğal bir pentasiklik triterpen olan betulinik asit (BA), seçici antitümör özellikleri nedeniyle ilgiçekmektedir.Gereç ve Yöntemler: Bu çalışmada, BA’nın SH-SY5Y nöroblastoma ve epitelyal hücre hattı, Vero, üzerindeki sitotoksik ve moleküler etkileriincelendi. Hücre canlılığı ise MTT testi ile değerlendirildi. Morfolojik değişiklikler mikroskop ile gözlemlendi. Apoptoz (Bax, Bcl-2, Caspase-3,p53, p21) ve hücre döngüsü (CDK1, Cyclin B1, Ki-67, EAG1) ile ilişkili genlerin ekspresyon seviyeleri qPCR ile analiz edildi.Bulgular: BA, her iki hücre hattında da zaman ve doz bağımlı olarak hücre canlılığını anlamlı şekilde azalttı; SH-SY5Y hücreleri dahaduyarlı bulundu (48 saat için IC₅₀=75 μM). SH-SY5Y hücrelerinde hücre büzülmesi ve hücre yoğunluğunda azalma gibi morfolojikdeğişiklikler belirgindi. Bu hücre hattında BA tedavisi pro-apoptotik genlerin (Bax, Caspase-3, p53, p21) ifadesini artırırken, anti-apoptotik veproliferasyonla ilişkili genlerin (Bcl-2, CDK1, Cyclin B1, Ki-67, EAG1) ifadesini azalttı (p CR - 1. Turkish Statistical Institute. (2022). Health statistics yearbook 2022 [Data set]. https://data.tuik.gov.tr/Bulten/Index?p=Saglik- Istatistikleri-Yilligi-2022-46749 CR - 2. Ministry of Health of Türkiye. (2022). Childhood cancers in Türkiye: Incidence and evaluation report [PDF]. Republic of Türkiye Ministry of Health. https://hsgm.saglik.gov.tr/depo/birimler/ kanser-db/Dokumanlar/Raporlar/17.Agustos_2021_Kanser_ Kontrol_Programi_versiyon-1.pdf CR - 3. World Health Organization. (2022). Cancer. https://www.who. int/news-room/fact-sheets/detail/cancer CR - 4. Banerjee, S., Banerjee, S., Bishayee, A., Da Silva, M. N., Sukocheva, O. A., Tse, E., ... & Bishayee, A. (2024). Cellular and molecular mechanisms underlying the potential of betulinic acid in cancer prevention and treatment. Phytomedicine, 132, 155858. https://doi.org/10.1016/j.phymed.2024.155858 CR - 5. Aswathy, M., Vijayan, A., Daimary, U. D., Girisa, S., Radhakrishnan, K. V., & Kunnumakkara, A. B. (2022). Betulinic acid: A natural promising anticancer drug, current situation, and future perspectives. Journal of Biochemical and Molecular Toxicology, 36(12), e23206. https://doi.org/10.1002/jbt.23206 CR - 6. Gao, S., Wang, W., Ye, W., & Wang, K. (2022). The mechanism study of Eag1 potassium channel in gastric cancer. Translational Cancer Research, 11(10), 3827–3835. https://doi. org/10.21037/tcr-22-2276 CR - 7. Luis, E., Anaya-Hernández, A., León-Sánchez, P., & Durán- Pastén, M. L. (2022). The Kv10.1 channel: A promising target in cancer. International Journal of Molecular Sciences, 23(15), 8458. https://doi.org/10.3390/ijms23158458 CR - 8. Toplak, Ž., Hendrickx, L. A., Abdelaziz, R., Shi, X., Peigneur, S., Tomašič, T., ... & Pardo, L. A. (2022). Overcoming challenges of HERG potassium channel liability through rational design: Eag1 inhibitors for cancer treatment. Medicinal Research Reviews, 42(1), 183–226. https://doi.org/10.1002/med.21808 CR - 9. An, T., Zha, W. & Zi, J. (2020). Biotechnological production of betulinic acid and derivatives and their applications. Appl Microbiol Biotechnol 104, 3339–3348. https://doi.org/10.1007/ s00253-020-10495-1 CR - 10. Hordyjewska, A., Ostapiuk, A., Horecka, A., & Kurzepa, J. (2019). Betulin and betulinic acid: Triterpenoids derivatives with a powerful biological potential. Phytochemistry Reviews, 18, 929–951. https://doi.org/10.1007/s11101-019-09623-1 CR - 11. Bettariga, F., Taaffe, D. R., Galvão, D. A., Bishop, C., Kim, J. S., & Newton, R. U. (2024). Suppressive effects of exercise- conditioned serum on cancer cells: A narrative review of the influence of exercise mode, volume, and intensity. In Journal of Sport and Health Science (Vol. 13, Issue 4). https://doi. org/10.1016/j.jshs.2023.12.001 CR - 12. Zeng, A. Q., Yu, Y., Yao, Y. Q., Yang, F. F., Liao, M., Song, L. J., Li, Y. L., Yu, Y., Li, Y. J., Deng, Y. Le, Yang, S. P., Zeng, C. J., Liu, P., Xie, Y. M., Yang, J. L., Zhang, Y. W., Ye, T. H., & Wei, Y. Q. (2018). Betulinic acid impairs metastasis and reduces immunosuppressive cells in breast cancer models. Oncotarget, 9(3). https://doi.org/10.18632/oncotarget.23376 CR - 13. Lombrea, A., Scurtu, A. D., Avram, S., Pavel, I. Z., Turks, M., Lugiņina, J., ... & Danciu, C. (2021). Anticancer potential of betulonic acid derivatives. International Journal of Molecular Sciences, 22(7), 3676. https://doi.org/10.3390/ijms22073676 CR - 14. Hordyjewska, A., Ostapiuk, A., & Horecka, A. (2018). Betulin and betulinic acid in cancer research. Journal of Pre-Clinical and Clinical Research, 12(2), 72–75. https://bibliotekanauki.pl/ articles/3735.pdf CR - 15. Ali Seyed, M., Dhyani, A., & Csuk, R. (2022). Chemopreventive and chemotherapeutic potential of betulin and betulinic acid: mechanistic insights from in vitro, in vivo and clinical studies. Food Science & Nutrition, 10(11), Article 2903. https://doi. org/10.3390/biomedicines10112903 CR - 16. Zúñiga, L., Cayo, A., González, W., Vilos, C., & Zúñiga, R. (2022). Potassium channels as a target for cancer therapy: Current perspectives. OncoTargets and Therapy, 15, 783–800. https://doi.org/10.2147/OTT.S346369 UR - https://doi.org/10.29058/mjwbs.1743485 L1 - https://dergipark.org.tr/tr/download/article-file/5059443 ER -