TY - JOUR T1 - Bir Atıksu Arıtma Tesisinin Suyun Sürdürülebilirliğine Katkısının Gri Su Ayak İzi İle Belirlenmesi TT - Determination of the Contribution of a Wastewater Treatment Plant to Water Sustainability through Grey Water Footprint AU - Acar, Filiz Nuran AU - Güneş, Gülsüm Merve PY - 2025 DA - November Y2 - 2025 DO - 10.34248/bsengineering.1749267 JF - Black Sea Journal of Engineering and Science JO - BSJ Eng. Sci. PB - Karyay Karadeniz Yayımcılık Ve Organizasyon Ticaret Limited Şirketi WT - DergiPark SN - 2619-8991 SP - 1680 EP - 1688 VL - 8 IS - 6 LA - tr AB - İnsan yaşamını destekleyen, gelişen ekonomi ve sağlıklı bir ekosistem için vazgeçilmez bir doğal kaynak olan suya, artan nüfus ve gelişmişlikle bağlantılı olarak daha fazla ihtiyaç duyulmaktadır. Tarımsal, endüstriyel su tüketiminin haricinde özellikle kentlerde evsel su tüketimi beraberinde daha fazla atık su üretilmesine neden olmaktadır. Dünyada, oluşan atık suların büyük bir oranı arıtılmadan alıcı ortama verilmektedir. Bu durum su kaynaklarının sürdürülebilirliği ve tatlı su taleplerinin sağlıklı ve yeterli düzeyde karşılanabilmesi üzerinde endişe oluşturmaktadır. Kentlerde suyun sürdürülebilir yönetiminin en önemli unsurlarından biri atık su arıtma tesisleridir. Atık su arıtma tesisleri (AAT)’nin suyun sürdürülebilirliğine katkısını ölçeklendirmenin yollarından biri su ayak izlerini hesaplamaktır. Bu çalışmada, Kuzey Doğu Anadolu Bölgesinde bir ilçede bulunan, evsel ve zaman zaman endüstriyel nitelikli atık suların arıtıldığı bir atık su arıtma tesisi için gri su ayak izi değerlendirmesi yapılmıştır. Gri su ayak iz, bir kirletici seviyesini alıcı ortam konsantrasyonlarına düşürmek için gerekli tatlı su hacmi olarak tanımlanmaktadır. Tesise ait 2023 yılı atık su biyokimyasal oksijen ihtiyacı (BOİ5), kimyasal oksijen ihtiyacı (KOİ) verileri dikkate alınarak, arıtılmaması ve arıtma yapılması durumları için gri su ayak izi değerleri aylık olarak Su Ayak İzi Ağı Metodolojisine göre değerlendirilmiştir. Arıtılmaması durumunda kirletici parametrelerin alıcı ortamda asimile olmaları için önemli miktarda tatlı su gerektiği görülmüştür. Birim atık su başına ortalama olarak BOİ5 giderimi ile 4,92 kat, KOİ giderimi ile 4,28 kat taze suyun asimile olmaktan korunduğu hesaplanmış ve bu hesaplamalarla AAT’nin su döngüsüne olan katkısı teyit edilmiştir. KW - Sürdürülebilir su yönetimi KW - Su ayak izi KW - Gri su ayak izi KW - Atık su arıtma tesisleri N2 - Water, an indispensable natural resource for human life, a developing economy and a healthy ecosystem, is needed more in connection with the increasing population and development. Agricultural and industrial water consumption, as well as domestic water consumption, particularly in cities, leads to increased wastewater production. A large portion of wastewater produced worldwide is discharged untreated into the receiving environment. This raises concerns about the sustainability of water resources and the ability to meet freshwater demand at a healthy and adequate level. Wastewater treatment plants (WWTP) are one of the most important elements of sustainable water management in cities. One way to measure the contribution of wastewater treatment plants to water sustainability is to calculate their water footprint. In this study, a greywater footprint assessment was conducted for a wastewater treatment plant located in a district in the Northeastern Anatolia Region, which treats domestic and occasionally industrial wastewater. The greywater footprint is defined as the volume of freshwater required to reduce pollutant levels to the concentrations in the receiving environment. Considering the plant's 2023 wastewater biochemical oxygen demand (BOD5) and chemical oxygen demand (COD) data, greywater footprint values were assessed monthly according to the Water Footprint Network Methodology for both non-treated and treated conditions. It was determined that without treatment, a significant amount of freshwater is required for the assimilation of pollutant parameters into the receiving environment. On average, BOD5 removal was calculated to protect 4.92 times more freshwater from assimilation per unit of wastewater, while COD removal protected 4.28 times more freshwater from assimilation. These calculations confirm the contribution of WWTP to the water cycle. CR - Awad H, Alalm MG, El-Etriby HK. 2019. Environmental and cost life cycle assessment of different alternatives for improvement of wastewater treatment plants in developing countries. Sci Total Environ, 660: 57-68. CR - Cucek L, Klemes JJ, Varbanov PS, Kravanja Z. 2015. Significance of environmental footprints for evaluating sustainability and security of development. Clean Technol Environ Policy, 17: 2125-2141. CR - Çankaya S. 2023. Evaluation of the impact of water reclamation on blue and grey water footprint in a municipal wastewater treatment plant. Sci Total Environ, 903: 166196. CR - Delanka-Pedige HMK, Munasinghe-Arachchige SP, Abeysiriwardana-Arachchige ISA, Nirmalakhandan N. 2021. Wastewater infrastructure for sustainable cities: assessment based on UN sustainable development goals (SDGs). Int J Sustain Dev World Ecol, 28(3): 203-209. CR - Dong H, Geng Y, Sarkis J, Fujita T, Okadera T, Xue B. 2013. Regional water footprint evaluation in China: a case of Liaoning. Sci Total Environ, 442: 215-224. CR - Ercin AE, Hoekstra AY. 2014. Water footprint scenarios for 2050: a global analysis. Environ Int, 64: 71-82. CR - Fallahi A, Taheriyoun M, Asghari K. 2024. Water footprint assessment in an industrial symbiosis system based on environmental, economic, and social sustainability indices. J Clean Prod, 454: 142227. CR - Galli A, Wiedmann T, Ercin E, Knoblauch D, Ewing B, Giljum S. 2012. Integrating ecological, carbon and water footprint into a “Footprint Family” of indicators: definition and role in tracking human pressure on the planet. State Art Ecol Footpr Theory Appl, 16: 100-112. CR - Galli A, Wiedmann T, Ercin E, Knoblauch D, Ewing B, Giljum S. 2011. Integrating ecological, carbon and water footprint: defining the “footprint family” and its application in tracking human pressure on the planet. Technical Document, Surrey, UK. CR - Gomez-Llanos E, Duran-Barroso P, Matías-Sanchez A. 2018. Management effectiveness assessment in wastewater treatment plants through a new water footprint indicator. J Clean Prod, 198: 463-471. CR - Gu Y, Dong Y, Wang H, Keller A, Xu J, Chiramba T, Li F. 2016. Quantification of the water, energy and carbon footprints of wastewater treatment plants in China considering a water-energy nexus perspective. Ecol Indic, 60: 402-409. CR - Hoekstra AY, Chapagain AK, Aldaya MM, Mekonnen MM. 2011. The Water Footprint Assessment Manual: Setting the Global Standard. Earthscan, London, Washington, DC. CR - Kalya E, Alver A. 2023. Determining the contribution of the wastewater treatment plant to the sustainable environment with water footprint indicators. Environ Dev Sustain, 25: 12999-13014. CR - Malakar K, Lu C. 2021. Measuring sustainability as distance to ideal position of economy, society and environment: application to China’s provincial water resources (2004-17). J Environ Manag, 292: 112742. CR - Mekonnen MM, Hoekstra AY. 2011. National water footprint accounts: the green, blue and grey water footprint of production and consumption. Value of Water, UNESCO-IHE, Delft, the Netherlands, pp: 45-59. CR - Morera S, Corominas L, Poch M, Aldaya MM, Comas J. 2016. Water footprint assessment in wastewater treatment plants. J Clean Prod, 112: 4741-4748. CR - Obaideen K, Shehata N, Sayed ET, Abdelkareem MA, Mahmoud MS, Olabi AG. 2022. The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus, 7: 100112. CR - Paterson W, Rushforth R, Ruddell BL, Konar M, Ahams IC, Gironás J, Mijic A, Mejia A. 2015. Water footprint of cities: a review and suggestions for future research. Sustainability, 7: 8461-8490. CR - Shao L, Chen GQ. 2013. Water footprint assessment for wastewater treatment: method, indicator, and application. Environ Sci Technol, 47: 7787-7794. CR - Silva JA. 2023. Wastewater treatment and reuse for sustainable water resources management: A systematic literature review. Sustainability, 15: 10940. CR - Stejskalová L, Ansorge L, Kučera J, Vološinová D. 2021. Grey water footprint as a tool for wastewater treatment plant assessment - Hostivice case study. Urban Water J, 18(10): 796-805. CR - Tarım ve Orman Bakanlığı. 2021. Yerüstü Su Kalitesi Yönetmeliği. URL: https://www.tarimorman.gov.tr/SYGM/Belgeler/mevzuatlar (erişim tarihi: 8 Temmuz 2025). CR - UN Habitat. 2016. World Cities Report 2016: Urbanization and development: emerging futures. URL: https://unhabitat.org/world-cities-report-2016 (erişim tarihi: 8 Temmuz 2025). CR - United Nations. 2020. SDG Indicators: global indicator framework for the Sustainable Development Goals and targets of the 2030 Agenda for Sustainable Development. URL: https://unstats.un.org/sdgs/indicators/indicators-list (erişim tarihi: 7 Temmuz 2025). CR - Van Vliet W. 2002. Cities in a globalizing world: from engines of growth to agents of change. Environ Urban, 14: 31-40. CR - Varol S, Alver A, Altaş A. 2024. The water footprint assessment for advanced biological wastewater treatment plant. Int J Environ Sci Technol, 21: 2035-2048. CR - Villarín MC, Merel S. 2020. Paradigm shifts and current challenges in wastewater management. J Hazard Mater, 390: 122139. CR - Zhang GP, Hoekstra AY, Mathews RE. 2013. Water footprint assessment (WFA) for better water governance and sustainable development. Water Resour Ind, 1-2: 1-6. UR - https://doi.org/10.34248/bsengineering.1749267 L1 - https://dergipark.org.tr/tr/download/article-file/5083889 ER -