TY - JOUR T1 - YAPAY ZEKÂ DESTEKLİ ANİMASYON VİDEO MAKALELER: AKADEMİK METİNLERİN YENİ NESİL SUNUMU TT - AI-SUPPORTED ANİMATED VİDEO ARTİCLES: A NEXT-GENERATİON PRESENTATİON OF ACADEMİC TEXTS AU - Sönmez, Ülkü AU - Kılıç, Doç. Dr. Ali PY - 2025 DA - September Y2 - 2025 JF - Troy Museum Journal JO - TRMuseum PB - T.C. Kültür ve Turizm Bakanlığı WT - DergiPark SN - 3023-7173 SP - 46 EP - 58 IS - 4 LA - tr AB - Bu çalışma, akademik içeriklerin geleneksel metin formatından görsel-işitsel sunumlara dönüşümünü ele almakta; özellikle yapay zekâ destekli animasyon video makale formatının olanaklarını incelemektedir. Değişen bilgi tüketim alışkanlıkları ve dijitalleşmenin etkisiyle, akademik bilginin yalnızca okunabilir değil, izlenebilir ve deneyimlenebilir biçimlerde sunulması giderek önem kazanmaktadır. Çalışmada, multimedya öğrenme kuramı çerçevesinde animasyonun öğrenmeye katkısı açıklanmış; doğal dil işleme, metinden sese ve otomasyon teknolojilerinin üretim sürecindeki işlevi değerlendirilmiştir. Ayrıca insan-yapay zekâ iş birliğine dayalı üretim modeli ve etik boyutlar tartışılmıştır. En özgün katkı olarak, geçmişte üretilmiş akademik çalışmaların günümüz teknolojileriyle yapay zekâ destekli animasyon video makalelere dönüştürülmesinin önemi vurgulanmıştır. Bu yaklaşım, akademik mirasın yeni medya biçimleriyle geleceğe aktarılması açısından yenilikçi ve dönüştürücü bir yöntem olarak değerlendirilmektedir. KW - Animasyon KW - Video Makale KW - Yapay Zekâ KW - Bilim İletişimi KW - Akademik İçerik Görselleştirme N2 - This study examines the transformation of academic content from traditional text-based formats into audiovisual presentations, with a particular focus on AI-assisted animated video articles. As information consumption habits shift and digital media becomes more dominant, the need to present academic knowledge not only in readable but also in watchable and experiential formats is growing. Within the framework of multimedia learning theory, the study discusses the pedagogical value of animation and evaluates the roles of natural language processing, text-to-speech synthesis, and automation technologies in the production process. It also explores human–AI collaboration and related ethical considerations. The study’s most original contribution lies in emphasizing the importance of transforming previously published academic works into AI-generated animated video articles using current technologies. This approach is presented as an innovative and transformative method for transmitting academic heritage into the future through new media formats. CR - Carr, N. (2010). The shallows: What the Internet is doing to our brains. W. W. Norton & Company. CR - Chung, Y., Lee, W., Lee, J., & Lee, H. (2023). Text-to-video generation: A review of recent methods. ACM Computing Surveys, 56(3), 1–35. https://doi.org/10.1145/3583553 CR - COPE. (2023). Guidelines on the use of AI tools in scholarly publishing. Committee on Publication Ethics. https://publicationethics.org/news/cope-position-statement-use-artificial-intelligence-ai-tools-scholarly-publishing CR - Daft, R. L., & Lengel, R. H. (1986). Organizational information requirements, media richness and structural design. Management Science, 32(5), 554–571. https://doi.org/10.1287/mnsc.32.5.554 CR - European Science Communication Institute. (2022). Science communication in the digital age: Strategies for engaging the public. https://www.esci.eu CR - Hirschberg, J., & Manning, C. D. (2015). Advances in natural language processing. Science, 349(6245), 261–266. https://doi.org/10.1126/science.aaa8685 CR - Höffler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17(6), 722–738. https://doi.org/10.1016/j.learninstruc.2007.09.013 CR - Kaushal, K., & Panda, B. N. (2019). Effectiveness of instructional animation on academic achievement of students: A meta-analysis. Malaysian Journal of Learning and Instruction, 16(2), 55–79. https://eric.ed.gov/?id=EJ1219792 CR - Klein-Avraham, I., Neuberger, C., & Kusters, G. (2023). Ethical dilemmas of AI-generated content: Ownership, transparency and credibility. Journal of Science Communication, 22(3), A03. https://doi.org/10.22323/2.22030203 CR - Kusters, G., Klein-Avraham, I., & Neuberger, C. (2023). Ethical issues in AI-generated content: Between transparency and responsibility. Journal of Science Communication, 22(3), A03. https://doi.org/10.22323/2.22030203 CR - Leiker, M. J., Gyllen, J., Eldesouky, H., & Cukurova, M. (2023). AI-generated vs human-made instructional videos: Comparative impacts on learning outcomes and engagement. arXiv preprint arXiv:2304.03784. https://arxiv.org/abs/2304.03784 CR - Lowe, R. K. (2004). Interrogation of a dynamic visualization for learning about a complex system. Learning and Instruction, 14(3), 257–274. https://doi.org/10.1016/j.learninstruc.2004.06.002 CR - Lynch, M. (2006). The production of scientific images: Vision and re-vision in the history, philosophy, and sociology of science. MIT Press. CR - Mayer, R. E. (2001). Multimedia learning. Cambridge University Press. CR - Mayer, R. E. (2008). Applying the science of learning: Evidence-based principles for the design of multimedia instruction. American Psychologist, 63(8), 760–769. https://doi.org/10.1037/0003-066X.63.8.760 CR - Mayer, R. E. (2009). Multimedia learning (2nd ed.). Cambridge University Press. CR - OECD. (2020). Science for policy: Principles and practices for effective communication. https://www.oecd.org/science/science-communication-2020.htm CR - Pellas, N. (2024). The impact of AI generated instructional videos on problem based learning in science teacher education. Education Sciences, 15(1), 102. https://doi.org/10.3390/educsci15010102 CR - Pew Research Center. (2014). The audience for digital news videos. Washington, DC: Pew Internet & American Life Project. https://www.pewresearch.org/journalism/2014/03/26/the-audience-for-digital-news-videos/ CR - Ploetzner, R., Berney, S., & Bétrancourt, M. (2021). Learning from dynamic visualizations: A meta-analysis. Instructional Science, 49(5), 661–691. https://doi.org/10.1007/s11251-021-09541-w CR - Priest, S. (2010). Communicating climate change: The path forward. In L. M. Milfont (Ed.), Climate Change and Psychology (pp. 55–67). American Psychological Association. CR - Sakthi, S. S., & Arulmurugan, R. (2020). An assistive voice-based text-to-speech model for visually impaired individuals. International Journal of Speech Technology, 23(4), 947–957. https://doi.org/10.1007/s10772-020-09737-3 CR - Schäfer, M. S., Taddicken, M., Metag, J., & Kristiansen, S. (2023). Communicating science in the age of artificial intelligence: Risks and recommendations. Public Understanding of Science, 32(1), 3–19. https://doi.org/10.1177/09636625221115545 CR - Schaffhauser, D. (2021). Study finds use of video boosts learning. Campus Technology. https://campustechnology.com/articles/2021/02/24/study-finds-use-of-video-boosts-learning.aspx CR - Stavesand, H., & Schröder, D. (2024). The blurred line between deepfake and AI-enhanced media: Ethical considerations in science communication. AI & Society. https://doi.org/10.1007/s00146-024-01721-2 CR - Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4(4), 295–312. https://doi.org/10.1016/0959-4752(94)90003-5 CR - Tan, X., Qin, T., Wen, Z., Zhou, Y., Liu, L., & Zhao, R. (2021). A survey on neural text-to-speech synthesis. ACM Transactions on Intelligent Systems and Technology, 12(2), 1–35. https://doi.org/10.1145/3447381 CR - Yao, L., Wang, C., & Zhang, Y. (2021). Effectiveness of animations in multimedia learning: A meta-analysis. Educational Technology & Society, 24(1), 233–247. CR - Zhang, Y., & Zhou, Z. (2020). Video abstracts: A new way for scholarly communication. Journal of the Association for Information Science and Technology, 71(2), 151–164. https://doi.org/10.1002/asi.24232 UR - https://dergipark.org.tr/tr/pub/troymuseum/issue//1753793 L1 - https://dergipark.org.tr/tr/download/article-file/5103167 ER -