TY - JOUR T1 - LSTM ve Hibrit CNN–LSTM Derin Öğrenme Yaklaşımları ile Isparta İli İçin Zaman Serisi Tabanlı Sıcaklık Tahmini TT - Time Series–Based Temperature Forecasting for Isparta Province Using LSTM and Hybrid CNN–LSTM Deep Learning Approaches AU - Çoban, Erdem PY - 2025 DA - November Y2 - 2025 DO - 10.71445/umbd.1761095 JF - Uluborlu Mesleki Bilimler Dergisi PB - Isparta Uygulamalı Bilimler Üniversitesi WT - DergiPark SN - 2651-5423 SP - 104 EP - 117 VL - 8 IS - 3 LA - tr AB - Günlük hava sıcaklığı, tarım, enerji, sağlık ve su yönetimi gibi pek çok sektörü doğrudan etkileyen kritik bir meteorolojik parametredir. Küresel iklim değişikliğiyle birlikte sıcaklık rejimlerindeki dalgalanmalar ve uzun vadeli artışlar, bölgesel tahmin modellerinin geliştirilmesini daha da önemli hale getirmiştir. Bu çalışmada, Isparta ili için günlük hava sıcaklığı tahmini amacıyla dört farklı modelin (XGBoost, LSTM, CNN ve CNN–LSTM) karşılaştırmalı analizi gerçekleştirilmiştir. Geçmiş yıllara ait günlük sıcaklık verileri kullanılarak yapılan tahminlerde, modeller hem eğitim hem de test setleri üzerinde MAE, MSE, R², NSE ve Willmott d gibi istatistiksel ölçütlerle değerlendirilmiştir. Elde edilen sonuçlar, test verisi üzerinde LSTM modelinin en yüksek doğruluğu sunduğunu göstermiştir (MAE 1,139, MSE 2,334, R² 0,966, NSE 0,965, Willmott d 0,991). CNN–LSTM modeli ise LSTM’e çok yakın değerlerle (MAE 1,236, MSE 2,661, R² 0,962, NSE 0,960, Willmott d 0,990) istikrarlı bir alternatif olarak öne çıkmıştır. CNN modeli rekabetçi performans sergilemiş (MAE 1,228, MSE 2,688, R² 0,961, NSE 0,960, Willmott d 0,989), XGBoost modeli ise diğer modellere kıyasla daha zayıf kalmıştır (MAE 2,526, MSE 10,63, R² 0,855, NSE 0,843, Willmott d 0,960). Genel olarak, LSTM modeli uzun vadeli bağımlılıkları yakalama başarısıyla öne çıkarken, CNN–LSTM modeli kısa dönemli örüntüleri de dikkate alarak güvenilir ve kararlı bir tahmin yaklaşımı sunmuştur. Bu bulgular, derin öğrenme modellerinin yerel ölçekli sıcaklık tahminlerinde karar vericilere daha doğru öngörüler sağlayabileceğini ortaya koymaktadır. KW - CNN KW - Derin öğrenme KW - LSTM KW - Sıcaklı Tahmini KW - XGBoost KW - Zaman Serisi N2 - Temperature and its variations play a crucial role in agriculture, energy consumption, and urban planning. Accurately forecasting air temperature is essential for sustainable resource management and climate adaptation strategies. In this study, four different models—XGBoost, LSTM, CNN, and the hybrid CNN–LSTM—were applied for daily temperature prediction in Isparta, a region sensitive to climatic fluctuations. The performance of the models was evaluated using statistical metrics including MAE, MSE, R², NSE, and Willmott’s d. The results show that the LSTM model achieved the highest accuracy on the test data, with a mean absolute error of 1.14 °C, mean squared error of 2.33, coefficient of determination of 0.966, Nash–Sutcliffe efficiency of 0.965, and Willmott’s d index of 0.991. The CNN–LSTM model provided very close results, with a mean absolute error of 1.23 °C, mean squared error of 2.66, coefficient of determination of 0.962, Nash–Sutcliffe efficiency of 0.960, and Willmott’s d index of 0.990, demonstrating a stable predictive ability. The CNN model also produced competitive results, while the XGBoost algorithm showed weaker performance with higher error values and lower generalization capability. These findings highlight that LSTM is most effective in capturing long-term dependencies, whereas the CNN–LSTM hybrid offers a robust alternative capable of modeling both short-term patterns and long-term dynamics. Thus, both models can be considered valuable tools for local meteorological forecasting and climate-aware decision-making. CR - Aksay, E., Çoban, E., & Güçlü, Y. S. (2025). Normalized innovative trend analysis model and Mann-Kendall test for solar data. Modeling Earth Systems and Environment, 11(5), Article 347. https://doi.org/10.1007/s40808-025-02550-5 CR - Alizamir, M. (2025). Daily soil temperature prediction using hybrid deep learning and SHAP for sustainable soil management. International Journal of Green Energy. Advance online publication. https://doi.org/10.1080/19942060.2025.2541686 CR - Astsatryan, H., Hakobyan, G., Harutyunyan, A., Poghosyan, M., & Kostanyan, H. (2021). Air temperature prediction using artificial neural networks for the Ararat Valley. Earth Science Informatics, 14, 2359–2372. https://doi.org/10.1007/s12145-021-00583-9 CR - Brownlee, J. (2019). XGBoost With Python: Gradient Boosted Trees with XGBoost and scikit-learn. Machine Learning Mastery. CR - Beloev, H. I., Saitov, S. R., Filimonova, A. A., Chichirova, N. D., Babikov, O. E., & Iliev, I. K. (2025). Short-Term Electrical Load Forecasting Based on XGBoost Model. Energies, 18(19), 5144. https://doi.org/10.3390/en18195144 CR - Buratto, W. G., Muniz, R. N., Nied, A., Barros, C. F. D. O., Cardoso, R., & Gonzalez, G. V. (2024). Wavelet CNN‐LSTM time series forecasting of electricity power generation considering biomass thermal systems. IET Generation, Transmission & Distribution, 18(21), 3437-3451.https://doi.org/10.1049/gtd2.13292 CR - Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794).https://doi.org/10.1145/2939672.2939785 CR - Cifuentes, J., Marulanda, G., Bello, A., & Reneses, J. (2020). Air temperature forecasting using machine learning techniques: a review. Energies, 13(16), 4215. https://doi.org/10.3390/en13164215 CR - Çoban, E. (2024). Makine öğrenmesi algoritmaları ile yaz sezonu ortalama akım değerlerinin tahmini. Journal of Innovations in Civil Engineering and Technology, 6(2), 73–81. https://doi.org/10.60093/jiciviltech.1497771 CR - Fang, Z., Yang, S., Lv, C., An, S., & Wu, W. (2022). Application of a data-driven XGBoost model for the prediction of COVID-19 in the USA: A time-series study. BMJ Open, 12(2), e056685. https://doi.org/10.1136/bmjopen-2021-056685 CR - Gao, P., Li, D., Liu, Z., Li, W., & Yang, X. (2023). NDVI prediction based on time series decomposition and CNN–LSTM combination. Water Resources Management, 37, 1089–1106. https://doi.org/10.1007/s11269-022-03419-3 CR - Henderi, H., Wahyuningsih, T., & Rahwanto, E. (2021). Comparison of Min-Max normalization and Z-Score Normalization in the K-nearest neighbor (kNN) Algorithm to Test the Accuracy of Types of Breast Cancer. Indonesian Journal of Information and Information Systems, 4(1), 1–6. https://doi.org/10.47738/ijiis.v4i1.73 CR - Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 CR - Hou, J., Li, L., Wang, R., & Wang, Z. (2022). Hourly temperature prediction using CNN–LSTM. Geomatics, Natural Hazards and Risk, 13(1), 1138–1157. https://doi.org/10.1080/19475705.2022.2102942 CR - Hou, W., Zhang, X., & Wang, Y. (2022). Hourly air temperature prediction using CNN–LSTM hybrid deep learning model: A case study in Yinchuan, China. Atmosphere, 13(8), 1269. https://doi.org/10.1080/19475705.2022.2102942 CR - Kalkınç, H. Y., Çoban, E., & Güçlü, Y. S. (2025). Wilcoxon testi ve saçılma diyagramı kullanılarak hidrometeorolojik verilerin trend analizi. Turkish Journal of Civil Engineering, 36(5), 1-31. https://doi.org/10.18400/tjce.1630037 CR - Karevan, Z., & Suykens, J. A. K. (2020). Transductive LSTM for time-series prediction: An application to weather forecasting. Neural Networks, 125, 1–9. https://doi.org/10.1016/j.neunet.2019.12.030 CR - Kim, T. Y., & Cho, S. (2019). Predicting residential energy consumption using CNN-LSTM neural networks. Energy, 182, 72–81. https://doi.org/10.1016/j.energy.2019.05.230 CR - LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324. https://doi.org/10.1109/5.726791 CR - Mutlu, A. Comparative evaluation of NASA, ERA5, and observational data for accuracy and reliability. Theor Appl Climatol 156, 367 (2025). https://doi.org/10.1007/s00704-025-05605-w CR - Nelson, D. M. Q., Pereira, A. M., & de Oliveira, R. A. (2017). Stock market's price movement prediction with LSTM neural networks. In 2017 International Joint Conference on Neural Networks (IJCNN) (pp. 1419–1426). https://doi.org/10.1109/IJCNN.2017.7966019 CR - Nielsen, D. (2016). Tree boosting with XGBoost: Why does XGBoost win “every” machine learning competition? Master’s thesis, NTNU. http://hdl.handle.net/11250/2433761 CR - Oord, A. V. D., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., ... & Kavukcuoglu, K. (2016). WaveNet: A generative model for raw audio. arXiv preprint arXiv:1609.03499. https://arxiv.org/abs/1609.03499 CR - Saplıoğlu, K., & Çimen, M. (2010). Yapay sinir ağlarını kullanarak günlük yağış miktarının tahmini. Mühendislik Bilimleri ve Tasarım Dergisi, 1(1), 14–21. CR - Utku, A. (2024). CNN–LSTM hibrit modeli ile Bingöl ve Tunceli için hava sıcaklığı tahmini. International Journal of Pure and Applied Sciences, 10(2), 550–562. https://doi.org/10.29132/ijpas.1548698 CR - Xiao, C., Liu, X., & Zeng, Z. (2019). Sea surface temperature prediction using LSTM-AdaBoost combination with time series satellite data. Remote Sensing of Environment, 233, 111358. https://doi.org/10.1016/j.rse.2019.111358 CR - Yan, H., He, Z., Gao, C., Xie, M., Sheng, H., & Chen, H. (2022). Investment estimation of prefabricated concrete buildings based on XGBoost machine learning algorithm. Advanced Engineering Informatics, 54, 101789. https://doi.org/10.1016/j.aei.2022.101789 CR - Yilmaz, M. (2023). Accuracy assessment of temperature trends from ERA5 and ERA5-Land. Science of The Total Environment, 856, 159182. https://doi.org/10.1016/j.scitotenv.2022.159182 CR - Yu, Y., Si, X., Hu, C., & Zhang, J. (2019). A review of recurrent neural networks: LSTM cells and network architectures. Neural computation, 31(7), 1235-1270. https://doi.org/10.1162/neco_a_01199 CR - Zhang, P., Jia, Y., & Shang, Y. (2022). Research and application of XGBoost in imbalanced data. International Journal of Distributed Sensor Networks, 18(6), 15501329221106935. https://doi.org/10.1177/15501329221106935 UR - https://doi.org/10.71445/umbd.1761095 L1 - https://dergipark.org.tr/tr/download/article-file/5136332 ER -