TY - JOUR T1 - Recent Approaches to Antibacterial Textile Production Using Inorganic, Organic, and Sustainable Bioactive Substances: A Review TT - İnorganik, Organik ve Sürdürülebilir Biyoaktif Maddeler Kullanılarak Antibakteriyel Tekstil Üretimine Yönelik Son Yaklaşımlar: Bir İnceleme AU - Korkmaz, Gürsel PY - 2025 DA - September Y2 - 2025 DO - 10.51972/tfsd.1763437 JF - Turkish Journal of Science and Health JO - TFSD PB - Ümit Muhammet KOÇYİĞİT WT - DergiPark SN - 2717-7173 SP - 210 EP - 234 VL - 6 IS - 3 LA - en AB - Antibiotics have ushered in a new era in the treatment of bacterial infections. However, over time, microorganisms have developed resistance mechanisms that increasingly limit available treatment options. Consequently, identifying novel antibacterial bioactive substances and advancing research in this field have become urgent priorities. In addition, antibacterial textiles can contribute to reducing contamination in high human-traffic settings, such as hotels and hospitals.Textile materials, due to their moisture content and nutrients, provide a suitable growing medium for bacteria. Bacteria that grow in contaminated textiles pose a threat to public health and reduce textile performance. Textile materials produced from various raw materials, such as cotton, polyester, and wool, can be gained antibacterial properties via appropriate bioactive substances and under appropriate conditions. Bioactive substances used in antibacterial textile applications are primarily divided into two categories: organic and inorganic. These substances can be produced synthetically or derived from natural sources, such as chitosan and casein, or from sustainable sources, such as coffee and tea waste.This study analyzes antibacterial textile research published between 2015 and 2025, retrieved from the Web of Science and ScienceDirect databases. The studies were categorized as either organic or inorganic according to the type of bioactive substances used in antibacterial textile production, and these categories were further subdivided based on production methods. The article presents an overview of the production processes of these bioactive substances, their application methods on textile materials, and the outcomes of antibacterial performance evaluations. KW - Antibacterial KW - antibacterial textiles KW - bioactive compounds KW - functional textiles N2 - Antibiyotikler, bakteriyel enfeksiyonların tedavisinde yeni bir çağ başlatmıştır. Ancak zamanla mikroorganizmalar, mevcut tedavi seçeneklerini giderek sınırlayan direnç mekanizmaları geliştirmiştir. Sonuç olarak, yeni antibakteriyel biyoaktif maddelerin belirlenmesi ve bu alandaki araştırmaların ilerletilmesi acil öncelikler haline gelmiştir. Ayrıca, antibakteriyel tekstiller, otel ve hastane gibi yoğun insan trafiğine sahip ortamlarda kontaminasyonun azaltılmasına katkıda bulunabilir.Tekstil malzemeleri, nem içeriği ve besin maddeleri nedeniyle bakteriler için uygun bir üreme ortamı sağlar. Kirlenmiş tekstillerde üreyen bakteriler halk sağlığı için tehdit oluşturur ve tekstil performansını düşürür. Pamuk, polyester ve yün gibi çeşitli hammaddelerden üretilen tekstil malzemelerine, uygun biyoaktif maddeler ve uygun koşullar altında antibakteriyel özellikler kazandırılabilir. Antibakteriyel tekstil uygulamalarında kullanılan biyoaktif maddeler temel olarak organik ve inorganik olmak üzere iki kategoriye ayrılır. Bu maddeler sentetik olarak üretilebilir veya kitosan ve kazein gibi doğal kaynaklardan ya da kahve ve çay atıkları gibi sürdürülebilir kaynaklardan elde edilebilir. Bu çalışma, Web of Science ve ScienceDirect veri tabanlarından alınan, 2015-2025 yılları arasında yayınlanan antibakteriyel tekstil araştırmalarını analiz etmektedir. Çalışmalar, antibakteriyel tekstil üretiminde kullanılan biyoaktif maddelerin türüne göre organik veya inorganik olarak sınıflandırılmış ve bu kategoriler üretim yöntemlerine göre alt gruplara ayrılmıştır. Makale, bu biyoaktif maddelerin üretim süreçlerine, tekstil malzemelerine uygulama yöntemlerine ve antibakteriyel performans değerlendirmelerinin sonuçlarına genel bir bakış sunmaktadır. CR - Aad, R., Dragojlov, I., Vesentini, S. (2024). Sericin Protein: Structure, Properties, and Applications. Journal of Functional Biomaterials, Vol. 15. Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/jfb15110322 CR - Akkaya, A., Ozseker, E. E. (2019). Modification of polyacrylonitrile fabric for antibacterial application by tetracycline immobilization. Polymer Testing, 78. https://doi.org/10.1016/j.polymertesting.2019.105959 CR - Attia, N. F., Zakria, A. M., Nour, M. A. et al. (2023). Rational strategy for construction of multifunctional coatings for achieving high fire safety, antibacterial, UV protection and electrical conductivity functions of textile fabrics. Materials Today Sustainability, 23. https://doi.org/10.1016/j.mtsust.2023.100450 CR - Attia, Nour F., Mohamed, A., Hussein, A. et al. (2022). Bioinspired one-dimensional based textile fabric coating for integrating high flame retardancy, antibacterial, toxic gases suppression, antiviral and reinforcement properties. Polymer Degradation and Stability, 205. https://doi.org/10.1016/j.polymdegradstab.2022.110152 CR - Balakumaran, M. D., Ramachandran, R., Jagadeeswari, S. et al. (2016). In vitro biological properties and characterization of nanosilver coated cotton fabrics - An application for antimicrobial textile finishing. International Biodeterioration and Biodegradation, 107, 48–55. https://doi.org/10.1016/j.ibiod.2015.11.011 CR - Bukhari, A., Yar, M., Zahra, F., Nazir, A. et al. (2023). A novel formulation of triethyl orthoformate mediated durable, smart and antibacterial chitosan cross-linked cellulose fabrics. International Journal of Biological Macromolecules, 253. https://doi.org/10.1016/j.ijbiomac.2023.126813 CR - Cerempei, A., Mureşan, E. I., Cimpoeşu, N. et al. (2016). Dyeing and antibacterial properties of aqueous extracts from quince (Cydonia oblonga) leaves. Industrial Crops and Products, 94, 216–225. https://doi.org/10.1016/j.indcrop.2016.08.018 CR - Chen, J., Zhou, Y., Yan, Z. et al. (2024). Moxa combustion waste and its bio activities on cotton -- a facile and green finishing process towards a sustainable and value adding application for medical textile. Journal of Cleaner Production, 483. https://doi.org/10.1016/j.jclepro.2024.144259 CR - Chen, M., ShangGuan, J., Jiang, J. et al. (2023). Durably antibacterial cotton fabrics coated by protamine via Schiff base linkages. International Journal of Biological Macromolecules, 227, 1078–1088. https://doi.org/10.1016/j.ijbiomac.2022.11.287 CR - Demirdogen, R. E., Kilic, D., Emen, F. M. et al. (2020). Novel antibacterial cellulose acetate fibers modified with 2- fluoropyridine complexes. Journal of Molecular Structure, 1204. https://doi.org/10.1016/j.molstruc.2019.127537 CR - Deng, C., Yu, Z., Liang, F. et al. (2023). Surface nanoengineering of cellulosic textiles for superior biocidal performance and effective bacterial detection. CR - Chemical Engineering Journal, 473. https://doi.org/10.1016/j.cej.2023.145492 Diksha, Singh, R., Khanna, L. (2021). Glebionis coronaria (L.) Cass. ex Spach (Asteraceae)- a new fabric dye with potential antibacterial properties. Journal of the Indian Chemical Society, 98(11). https://doi.org/10.1016/j.jics.2021.100193 CR - Dong, Y., Thomas, N. L., Lu, X. (2017). Electrospun duallayer mats with covalently bonded ZnO nanoparticles for moisture wicking and antibacterial textiles. Materials and Design, 134, 54–63. https://doi.org/10.1016/j.matdes.2017.08.033 CR - Fang, J., Meng, C., Zhang, G. (2022). Agricultural waste of Ipomoea batatas leaves as a source of natural dye for green coloration and bio-functional finishing for textile fabrics. Industrial Crops and Products, 177. https://doi.org/10.1016/j.indcrop.2021.114440 CR - Fang, Y., Chen, L., Zhang, Y. (2023). Construction of Cu2O single crystal nanospheres coating with brilliant structural color and excellent antibacterial properties. Optical Materials, 138. https://doi.org/10.1016/j.optmat.2023.113724 CR - Fouda, A., EL-Din Hassan, S., Salem, S. S. (2018). In-Vitro cytotoxicity, antibacterial, and UV protection properties of the biosynthesized Zinc oxide nanoparticles for medical textile applications. Microbial Pathogenesis, 125, 252–261. https://doi.org/10.1016/j.micpath.2018.09.030 CR - Gokce, Y., Aktas, Z., Capar, G. et al. (2020). Improved antibacterial property of cotton fabrics coated with waste sericin/silver nanocomposite. Materials Chemistry and Physics, 254. https://doi.org/10.1016/j.matchemphys.2020.123508 CR - Grand View Research. (2024). Antimicrobial Textiles Market Size And Share Report, 2030. Retrieved September 24, 2025, from https://www.grandviewresearch.com/industryanalysis/ antimicrobial-textiles-market-report CR - Guzińska, K., Kaźmierczak, D., Dymel, M. et al. (2018). Anti-bacterial materials based on hyaluronic acid: Selection of research methodology and analysis of their anti-bacterial properties. Materials Science and Engineering C, 93, 800–808. https://doi.org/10.1016/j.msec.2018.08.043 CR - Hassan, M. M. (2021). Enhanced insect-resistance, UV protection, and antibacterial and antistatic properties exhibited by wool fabric treated with polyphenols extracted from mango seed kernel and feijoa peel. RSC Advances, 11(3), 1482–1492. https://doi.org/10.1039/d0ra09699g CR - He, L., Gao, C., Li, S. et al. (2017). Non-leaching and durable antibacterial textiles finished with reactive zwitterionic sulfobetaine. Journal of Industrial and Engineering Chemistry, 46, 373–378. https://doi.org/10.1016/j.jiec.2016.11.006 CR - Hongrattanavichit, I., Aht-Ong, D. (2021). Antibacterial and water-repellent cotton fabric coated with organosilane-modified cellulose nanofibers. Industrial Crops and Products, 171. https://doi.org/10.1016/j.indcrop.2021.113858 CR - Ibrahim, N. A., Eid, B. M., Abdel-Aziz, M. S. (2016). Green synthesis of AuNPs for eco-friendly functionalization of cellulosic substrates. Applied Surface Science, 389, 118–125. https://doi.org/10.1016/j.apsusc.2016.07.077 CR - Jiang, T., Zhou, J., Wang, R. (2025). Long-term and rapid antibacterial efficacy of Cu2O-GO nanocomposites for medical protective textiles. Composites Part A: Applied Science and Manufacturing, 190. https://doi.org/10.1016/j.compositesa.2024.108673 CR - Korkmaz, G. (2019). Investigation of Antibacterial Activities of Chalcone Derivatives on Knitted Fabric Structures with Different Raw Materials. Institute of Science, Bursa. CR - Kumar, A., Singh, A., Sheikh, J. (2023). Boric acid crosslinked chitosan microcapsules loaded with frankincense oil for the development of mosquitorepellent, antibacterial, antioxidant, and flameretardant cotton. International Journal of Biological Macromolecules, 248. https://doi.org/10.1016/j.ijbiomac.2023.125874 CR - Li, Y., Zhao, H., Li, T. et al. (2023). Quaternary ammonium salts functionalized cotton fibers with highly effective and durable antibacterial performances for daily healthcare textile applications. Industrial Crops and Products, 202. https://doi.org/10.1016/j.indcrop.2023.117100 CR - Ma, L. L., Wei, Y. Y., Li, J. et al. (2024). Clinical study of antibacterial medical textiles containing polyhydroxyalkanoate oligomers for reduction of hospital-acquired infections. Journal of Hospital Infection, 149, 144–154. https://doi.org/10.1016/j.jhin.2024.04.009 CR - Maślana, K., Kędzierski, T., Żywicka, A. et al. (2022). Design of self-cleaning and self-disinfecting paper-shaped photocatalysts based on wood and eucalyptus derived cellulose fibers modified with gCN/Ag nanoparticles. Environmental Nanotechnology, Monitoring and Management, 17. https://doi.org/10.1016/j.enmm.2022.100656 CR - Najmi, Z., Mlinarić, N. M., Scalia, A. C. et al. (2024). Antibacterial evaluation of different prosthetic liner textiles coated by CuO nanoparticles. Heliyon, 10(1). https://doi.org/10.1016/j.heliyon.2023.e23849 Naz, S., Ali, M., Ashraf, M. et al. (2025). Development of durable multifunctional textiles by application of carbon quantum dots synthesized from postconsumer cellulosic waste. Journal of Molecular Structure, 1335. https://doi.org/10.1016/j.molstruc.2025.141951 CR - Petkova, P., Francesko, A., Perelshtein, I. et al. (2016). Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial ZnO nanoparticles. Ultrasonics Sonochemistry, 29, 244–250. https://doi.org/10.1016/j.ultsonch.2015.09.021 CR - Research and Markets. (2025). Antimicrobial Textile Market Report 2025 - Research and Markets. Retrieved September 24, 2025, from https://www.researchandmarkets.com/reports/5751 640/antimicrobial-textile-marketreport? utm_source=GNEandutm_medium=PressRele aseandutm_code=bgsqwtandutm_campaign=203110 8+- +Antimicrobial+Textile+Market+Report+2025%3a+Ma jor+Trends+include+Sustainable+Antimicrobial+Textil es%2c+Smart+and+Wearable+Antimicrobial+Textiles %2c+Antiviral+Textiles+and+Odor+Control+Textilesan dutm_exec=carimspi CR - Rilda, Y., Khairu Ummah, K., Septiani, U. et al. (2023). Biosynthesis of Zinc oxide nanorods using Agaricus bisporus and its antibacterial capability enhancement with dodeciltriethoxyl on cotton textiles. Materials Science and Engineering: B, 298. https://doi.org/10.1016/j.mseb.2023.116910 CR - Scheibe, A. S., de Araujo, I. P., Janssen, L. et al. (2022). Products from pyrolysis textile sludge as a potential antibacterial and alternative source of fuel oil. Cleaner Engineering and Technology, 6. https://doi.org/10.1016/j.clet.2022.100408 CR - Shaheen, T. I., El-Naggar, M. E., Abdelgawad, A. M. et al. (2016). Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. International Journal of Biological CR - Macromolecules, 83, 426–432. https://doi.org/10.1016/j.ijbiomac.2015.11.003 CR - Sharifikolouei, E., Najmi, Z., Cochis, A. et al. (2021). Generation of cytocompatible superhydrophobic Zr– Cu–Ag metallic glass coatings with antifouling properties for medical textiles. Materials Today Bio, 12. https://doi.org/10.1016/j.mtbio.2021.100148 CR - Spielman-Sun, E., Zaikova, T., Dankovich, T. (2018). Effect of silver concentration and chemical transformations on release and antibacterial efficacy in silvercontaining textiles. NanoImpact, 11, 51–57. https://doi.org/10.1016/j.impact.2018.02.002 CR - Staneva, D., Vasileva-Tonkova, E., Grabchev, I. (2019). Chemical modification of cotton fabric with 1,8- naphthalimide for use as heterogeneous sensor and antibacterial textile. Journal of Photochemistry and Photobiology A: Chemistry, 382. https://doi.org/10.1016/j.jphotochem.2019.111924 CR - Sülar, V., Aksoy, S., İtani̇, B. et al. (2025). Production and performance of textile-based surfaces containing tea and coffee wastes. Journal of Cleaner Production, 506. https://doi.org/10.1016/j.jclepro.2025.145496 CR - Suneeta, Harlapur, S., Harlapur, S. F. (2021). Enhancement of antibacterial properties of cotton fabric by using neem leaves extract as dye. Materials Today: Proceedings, 44, 523–526. Elsevier Ltd. https://doi.org/10.1016/j.matpr.2020.10.209 CR - Sunthar, T. P. M., Boschetto, F., Doan, H. N. et al. (2021). Antibacterial property of cellulose acetate composite materials reinforced with aluminum nitride. Antibiotics, 10(11). https://doi.org/10.3390/antibiotics10111292 CR - Taherirad, F., Maleki, H., Barani, H. et al. (2024). Optimizing dyeing parameters for sustainable wool dyeing using quinoa plant components with antibacterial properties. Cleaner Engineering and Technology, 21. https://doi.org/10.1016/j.clet.2024.100780 CR - Thanka Rajan, S., Subramanian, B., Arockiarajan, A. (2024). Synergistic performance of biomedical textiles incorporated with cerium oxide carbon nanocomposites for the antibacterial and sunlightdriven photocatalytic activity of self-cleaning. Chemical Engineering Science, 298. https://doi.org/10.1016/j.ces.2024.120390 CR - Umesh, M., Suresh, S., Santosh, A. S. et al. (2023). Valorization of pineapple peel waste for fungal pigment production using Talaromyces albobiverticillius: Insights into antibacterial, antioxidant and textile dyeing properties. Environmental Research, 229. https://doi.org/10.1016/j.envres.2023.115973 CR - Vieira, B., Padrão, J., Alves, C. et al. (2023). Enhancing Functionalization of Health Care Textiles with Gold Nanoparticle-Loaded Hydroxyapatite Composites. Nanomaterials, 13(11). https://doi.org/10.3390/nano13111752 CR - Wang, L., Zhou, B., Du, Y. et al. (2024). Guanidine Derivatives Leverage the Antibacterial Performance of Bio-Based Polyamide PA56 Fibres. Polymers, 16(19). https://doi.org/10.3390/polym16192707 CR - Wang, M., Zheng, S., Fang, K. et al. (2023). Green fabrication of inkjet printed antibacterial wool fabric with natural gardenia yellow dye. Industrial Crops and Products, 206. https://doi.org/10.1016/j.indcrop.2023.117700 CR - WHO. (2023). Guideline Infection prevention and control in the context of coronavirus disease (COVID-19): A guideline. Retrieved from http://apps.who.int/bookorders. CR - Wu, L., Fan, B., Yan, B. et al. (2024). Construction of durable antibacterial cellulose textiles through grafting dynamic disulfide-containing aminocompound and nanosilver deposition. International Journal of Biological Macromolecules, 259. https://doi.org/10.1016/j.ijbiomac.2023.129085 CR - Wu, Y., Lan, J., Xu, L. et al. (2025). Degradation and selective-oxidization of chitosan realize preparation of cotton textiles with prominent antibacterial and antiviral activity via one-step esterification. Applied Surface Science, 695. https://doi.org/10.1016/j.apsusc.2025.162903 CR - Xia, W., Li, Z., Tang, Y. et al. (2023). Sustainable recycling of café waste as natural bio resource and its value adding applications in green and effective dyeing/bio finishing of textile. Separation and Purification Technology, 309. https://doi.org/10.1016/j.seppur.2022.123091 CR - Xu, F. X., Ooi, C. W., Liu, B. L. et al. (2021). Antibacterial efficacy of poly(hexamethylene biguanide) immobilized on chitosan/dye-modified nanofiber membranes. International Journal of Biological Macromolecules, 181, 508–520. https://doi.org/10.1016/j.ijbiomac.2021.03.151 CR - Yılmaz, F., Bahtiyari, M. İ. (2020). Antibacterial finishing of cotton fabrics by dyeing with olive tree leaves fallen during olive harvesting. Journal of Cleaner Production, 270. https://doi.org/10.1016/j.jclepro.2020.122068 CR - Yılmaz, F., Bahtiyari, M. İ. (2021). Antibacterial Finishing of Linen Fabrics by Combination with Nano-Aluminum Oxide and Crosslinking Agent. Fibers and Polymers, 22(7), 1830–1836. https://doi.org/10.1007/s12221- 021-0865-5 CR - Yu, Z., Deng, C., Ding, C. et al. (2024). Organic-inorganic hybrid ZIF-8/MXene/cellulose-based textiles with improved antibacterial and electromagnetic interference shielding performance. International Journal of Biological Macromolecules, 266. https://doi.org/10.1016/j.ijbiomac.2024.131080 CR - Zargarian, S. S., Kupikowska-Stobba, B., Kosik-Kozioł, A. et al. (2024). Light-responsive biowaste-derived and bioinspired textiles: Dancing between bio-friendliness and antibacterial functionality. Materials Today Chemistry, 41. https://doi.org/10.1016/j.mtchem.2024.102281 CR - Zhang, N., Shi, R., Zhou, M. et al. (2023). Amyloid-like protein bridged nano-materials and fabrics for preparing rapid and long lasting antibacterial, UVresistant and personal thermal management textiles. International Journal of Biological Macromolecules, 247. https://doi.org/10.1016/j.ijbiomac.2023.125699 CR - Zhang, N., Wang, W., Zhou, M. et al. (2023). A controllable, universal, and natural supramolecular assembly coating strategy for multifunctionality textiles of antibacterial properties, UV resistance, antioxidant, and secondary reactivity. Industrial Crops and Products, 198. https://doi.org/10.1016/j.indcrop.2023.116637 CR - Zhang, W., Yang, Z. Y., Tang, R. C. et al. (2020). Application of tannic acid and ferrous ion complex as eco-friendly flame retardant and antibacterial agents for silk. Journal of Cleaner Production, 250. https://doi.org/10.1016/j.jclepro.2019.119545 CR - Zhang, X., Zhu, Y., Li, M. et al. (2025). Sustainable preparation of multifunctional textile from oil-flax straw waste for thermal management, electromagnetic interference shielding, and antimicrobial. Surfaces and Interfaces, 61. https://doi.org/10.1016/j.surfin.2025.106069 CR - Zhang, Y., Zhou, Q., Rather, L. J. et al. (2021). Agricultural waste of Eriobotrya japonica L. (Loquat) seeds and flora leaves as source of natural dye and bio-mordant for coloration and bio-functional finishing of wool textile. Industrial Crops and Products, 169. https://doi.org/10.1016/j.indcrop.2021.113633 CR - Zhang, Z., Xie, Q., Chao, T. et al. (2023). Construction of rough surface based on zein and rosin to hydrophobically functionalize cotton fabric with antibacterial activity. Progress in Organic Coatings, 184. https://doi.org/10.1016/j.porgcoat.2023.107839 CR - Zheng, H., Li, X., Liu, L. et al. (2022). Preparation of nanofiber core-spun yarn based on cellulose nanowhiskers/quaternary ammonium salts nanocomposites for efficient and durable antibacterial textiles. Composites Communications, 36. https://doi.org/10.1016/j.coco.2022.101388 CR - Zhou, C. E., Kan, C. W. (2015). Plasma-enhanced regenerable 5,5-dimethylhydantoin (DMH) antibacterial finishing for cotton fabric. Applied Surface Science, 328, 410–417. https://doi.org/10.1016/j.apsusc.2014.12.052 CR - Zhou, Y., Tang, R. C. (2018). Facile and eco-friendly fabrication of AgNPs coated silk for antibacterial and antioxidant textiles using honeysuckle extract. Journal of Photochemistry and Photobiology B: Biology, 178, 463–471. https://doi.org/10.1016/j.jphotobiol.2017.12.003 UR - https://doi.org/10.51972/tfsd.1763437 L1 - https://dergipark.org.tr/tr/download/article-file/5147161 ER -