TY - JOUR T1 - Tümör-Bağışıklık Hücre Etkileşimlerini Araştırmak İçin Biyomühendisliksel Yöntemler AU - Topal, Tuğba AU - Uzun, Zehra Ece PY - 2025 DA - November Y2 - 2025 DO - 10.63716/guffd.1768168 JF - Gazi Üniversitesi Fen Fakültesi Dergisi JO - GÜFFD PB - Gazi Üniversitesi WT - DergiPark SN - 2757-5543 SP - 343 EP - 374 VL - 6 IS - 2 LA - tr AB - Son yıllarda, immün hücrelerin tümör organoidleri ile birlikte kültürlenmesine yönelik artan bir ilgi bulunmaktadır. Bu yaklaşım, tümörler ile immün sistem arasındaki karmaşık etkileşimlere dair önemli bilgiler elde edilmesini sağlamıştır. Bu çalışmada, tümör mikro çevresi içerisinde yer alan immün hücrelerle olan etkileşimlerin modellenmesine yönelik olarak geliştirilen tümör–immün sistem hücresi organoidlerine dair mevcut gelişmeler ele alınmaktadır. Tümörün oluşumu, tümör mikro çevresinin temel bileşenleri ve bu çevrede yer alan başlıca immün hücre türleri hakkında genel bir çerçeve sunulmuştur. Özellikle hücre dışı matriksin biyokimyasal ve mekanik özelliklerinin; hücreler arası sinyalleşme, hücre göçü ve immün hücrelerin tümöre erişimi üzerindeki etkileri değerlendirilmektedir. Üç boyutlu kültür yöntemleriyle oluşturulan organoid modellerin geliştirilmesi, hastadan türetilmiş örneklerin kullanımı ve organ-on-a-chip gibi ileri teknolojilere dayalı yaklaşımlar sayesinde, tümör–immün sistem etkileşimlerinin daha fizyolojik koşullarda modellenmesi mümkün hale gelmektedir. Son olarak, bu modellerin klinik araştırmalarda kullanımı, tümör biyolojisinin anlaşılmasına katkıları ve gelecekteki potansiyel uygulama alanları tartışılmaktadır. KW - Tümör mikroçevresi KW - Çip üzerinde organoid teknolojisi KW - Hücre dışı matris. KW - Tümör mikroçevresi KW - Organoid KW - Biyomedikal Muhendisligi CR - Boutry, J., Tissot, S., Ujvari, B., Capp, J. P., Giraudeau, M., Nedelcu, A. M., et al. (2022). The evolution and ecology of benign tumors. Biochimica et Biophysica Acta Reviews on Cancer, 1877. https://doi.org/10.1016/j.bbcan.2021.188643. CR - Peña-Romero, A. C., and Orenes-Piñero, E. (2022). Dual effect of immune cells within tumour microenvironment: Pro- and anti-tumour effects and their triggers. Cancers (Basel), 14. https://doi.org/10.3390/cancers14071681. CR - Jeong, S. R., and Kang, M. (2023). Exploring tumor–immune interactions in co-culture models of T cells and tumor organoids derived from patients. International Journal of Molecular Sciences, 24, 14609. https://doi.org/10.3390/ijms241914609. CR - Arneth, B. (2019). Tumor microenvironment. Medicina, 56, 15. https://doi.org/10.3390/medicina56010015. CR - Neal, J. T., Li, X., Zhu, J., Giangarra, V., Grzeskowiak, C. L., Ju, J., et al. (2018). Organoid modeling of the tumor immune microenvironment. Cell, 175, 1972–1988.e16. https://doi.org/10.1016/j.cell.2018.11.021. CR - Brown, J. S., Amend, S. R., Austin, R. H., Gatenby, R. A., Hammarlund, E. U., and Pienta, K. J. (2023). Updating the Definition of Cancer. Molecular Cancer Research, 21, 1142–1147. https://doi.org/10.1158/1541-7786.MCR-23-0411/727658/AM/UPDATING-THE-DEFINITION-OF-CANCERUPDATING-THE. CR - Feitelson, M. A., Arzumanyan, A., Kulathinal, R. J., Blain, S. W., Holcombe, R. F., Mahajna, J., et al. (2015). Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Seminars in Cancer Biology, 35, S25–S54. https://doi.org/10.1016/J.SEMCANCER.2015.02.006. CR - Maniam, S., and Maniam, S. (2020). Cancer Cell Metabolites: Updates on Current Tracing Methods. ChemBioChem, 21, 3476–3488. https://doi.org/10.1002/CBIC.202000290. CR - Arı, M., Öğüt, S., Kaçar Döğer, F., Yazar, S., ve Adnan Menderes Üniversitesi Tıp Fakültesi Tıbbi Biyokimya Anabilim Dalı. (2017). Kanserin önlenmesinde antioksidanların rolü. Adnan Menderes Üniversitesi Sağlık Bilimleri Fakültesi Dergisi, 1(2), 67–74. https://dergipark.org.tr/tr/pub/amusbfd/issue/31082/337211 CR - Menendez, J. A., and Alarcón, T. (2014). Metabostemness: A new cancer hallmark. Frontiers in Oncology, 4, 112448. https://doi.org/10.3389/FONC.2014.00262/BIBTEX. CR - Hanahan, D., and Weinberg, R. A. (2000). The Hallmarks of Cancer. Cell, 100, 57–70. https://doi.org/10.1016/S0092-8674(00)81683-9. CR - Hanahan, D., and Weinberg, R. A. (2011). Hallmarks of Cancer: The Next Generation. Cell, 144, 646–674. https://doi.org/10.1016/J.CELL.2011.02.013. CR - Topal, T., and Tosun, İ. (2025). Hücre Dışı Matris ve Mekanotransdüksiyonun Kanser Üzerindeki Etkileri. Gazi Üniversitesi Fen Fakültesi Dergisi, 6, 113–130. https://doi.org/10.63716/GUFFD.1594101 CR - Anderson, N. M., and Simon, M. C. (2020). The tumor microenvironment. Current Biology, 30, R921–R925. https://doi.org/10.1016/J.CUB.2020.06.081. CR - Zhao, Y., Shen, M., Wu, L., Yang, H., Yao, Y., Yang, Q., Du, J., Liu, L., Li, Y., and Bai, Y. (2023). Stromal cells in the tumor microenvironment: Accomplices of tumor progression? Cell Death & Disease, 14(9), 1–24. https://doi.org/10.1038/s41419-023-06110-6 CR - Patel, A. (2020). Benign vs Malignant Tumors. JAMA Oncology, 6. https://doi.org/10.1001/jamaoncol.2020.2592. CR - Wang, B., Hu, S., Teng, Y., Chen, J., Wang, H., Xu, Y., et al. (2024). Current advance of nanotechnology in diagnosis and treatment for malignant tumors. Signal Transduction and Targeted Therapy, 9, 1–65. https://doi.org/10.1038/s41392-024-01889-y. CR - Lüönd, F., Tiede, S., and Christofori, G. (2021). Breast cancer as an example of tumour heterogeneity and tumour cell plasticity during malignant progression. British Journal of Cancer, 125. https://doi.org/10.1038/s41416-021-01328-7. CR - Eskiizmir, G. (2015). Tumor Microenvironment in Head and Neck Squamous Cell Carcinomas. Turkish Archives of Otorhinolaryngology, 53, 120. https://doi.org/10.5152/TAO.2015.1065. CR - Voena, C., and Chiarle, R. (2016). Advances in Cancer Immunology and Cancer Immunotherapy. Discovery Medicine, 21, 125–133. CR - Prendergast, G. C., and Jaffee, E. M. (2007). Cancer immunologists and cancer biologists: Why we didn’t talk then but need to now. Cancer Research, 67, 3500–3504. https://doi.org/10.1158/0008-5472.CAN-06-4626/654368/P/CANCER-IMMUNOLOGISTS-AND-CANCER-BIOLOGISTS-WHY-WE. CR - Habanjar, O., Diab-Assaf, M., Caldefie-Chezet, F., and Delort, L. (2021). 3D Cell Culture Systems: Tumor Application, Advantages, and Disadvantages. International Journal of Molecular Sciences, 22, 12200. https://doi.org/10.3390/IJMS222212200. CR - Ballav, S., Deshmukh, A. J., Siddiqui, S., Aich, J., Basu, S., and Ballav, S., et al. (2021). Two-Dimensional and Three-Dimensional Cell Culture and Their Applications. IntechOpen Press, United Kingdom. CR - Kamińska, K., Szczylik, C., Bielecka, Z. F., Bartnik, E., Porta, C., Lian, F., et al. (2015). The role of the cell–cell interactions in cancer progression. Journal of Cellular and Molecular Medicine, 19, 283–296. https://doi.org/10.1111/JCMM.12408. CR - Cardoso, B. D., Castanheira, E. M. S., Lanceros-Méndez, S., and Cardoso, V. F. (2023). Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies. Advanced Healthcare Materials, 12. https://doi.org/10.1002/ADHM.202202936. CR - Fennema, E., Rivron, N., Rouwkema, J., van Blitterswijk, C., and De Boer, J. (2013). Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol, 31, 108–115. https://doi.org/10.1016/J.TIBTECH.2012.12.003. CR - Živković, Z., and Opačak-Bernardi, T. (2025). An overview on spheroid and organoid models in applied studies. Science, 7, 27. https://doi.org/10.3390/SCI7010027. CR - Brown, T.E., and Anseth, K.S. (2017). Spatiotemporal hydrogel biomaterials for regenerative medicine. Chemical Society Reviews, 46, 6532–6552. https://doi.org/10.1039/C7CS00445A. CR - Habanjar, O., Diab-Assaf, M., Caldefie-Chezet, F., and Delort, L. (2021). 3D cell culture systems: Tumor application, advantages, and disadvantages. International Journal of Molecular Sciences, 22, 12200. https://doi.org/10.3390/IJMS222212200. CR - Fang, Y., and Eglen, R.M. (2017). Three-dimensional cell cultures in drug discovery and development. SLAS Discovery, 22, 456–472. https://doi.org/10.1177/1087057117696795. CR - Akkerman, N., and Defize, L.H.K. (2017). Dawn of the organoid era. BioEssays, United Kingdom, 39, 1600244. https://doi.org/10.1002/BIES.201600244. CR - Clevers, H. (2016). Modeling development and disease with organoids. Cell, 165, 1586–1597. https://doi.org/10.1016/j.cell.2016.05.082. CR - Fatehullah, A., Tan, S.H., and Barker, N. (2016). Organoids as an in vitro model of human development and disease. Nature Cell Biology, 18, 246–254. https://doi.org/10.1038/NCB3312. CR - Alhaque, S., Themis, M., and Rashidi, H. (2018). Three-dimensional cell culture: From evolution to revolution. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 373. https://doi.org/10.1098/RSTB.2017.0216. CR - Huch, M., and Koo, B.K. (2015). Modeling mouse and human development using organoid cultures. Development, 142, 3113–3125. https://doi.org/10.1242/DEV.118570. CR - Spence, J.R., Mayhew, C.N., Rankin, S.A., Kuhar, M.F., Vallance, J.E., Tolle, K., et al. (2011). Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature, 470, 105–110. https://doi.org/10.1038/NATURE09691. CR - Lancaster, M.A., Renner, M., Martin, C.A., Wenzel, D., Bicknell, L.S., Hurles, M.E., et al. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501, 373–379. https://doi.org/10.1038/NATURE12517. CR - Nakano, T., Ando, S., Takata, N., Kawada, M., Muguruma, K., Sekiguchi, K., et al. (2012). Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell, 10, 771–785. https://doi.org/10.1016/J.STEM.2012.05.009. CR - Kim, J., Koo, B.K., and Knoblich, J.A. (2020). Human organoids: Model systems for human biology and medicine. Nature Reviews Molecular Cell Biology, 21, 571–584. https://doi.org/10.1038/s41580-020-0259-3. CR - Hofer, M., and Lutolf, M.P. (2021). Engineering organoids. Nature Reviews Materials, 6, 402–420. https://doi.org/10.1038/s41578-021-00279-y. CR - Klompstra, T.M., Yoon, K.J., and Koo, B.K. (2025). Evolution of organoid genetics. European Journal of Cell Biology, 104, 151481. https://doi.org/10.1016/J.EJCB.2025.151481. CR - Joseph, J.S., Malindisa, S.T., and Ntwasa, M. (2018). Two-dimensional (2D) and three-dimensional (3D) cell culturing in drug discovery. In Cell Culture. https://doi.org/10.5772/INTECHOPEN.81552. CR - McKim, J., Goldberg, A., Kleinstreuer, N., Busquet, F., et al. (2015). A vision of toxicity testing in the 21st century. Applied In Vitro Toxicology, 1(1), 10–15. https://doi.org/10.1089/AIVT.2014.1501 CR - Langhans, S. A. (2018). Three-dimensional in vitro cell culture models in drug discovery and drug repositioning. Frontiers in Pharmacology, 9, 6. https://doi.org/10.3389/fphar.2018.00006 CR - Ajjarapu, S. M., Tiwari, A., & Kumar, S. (2023). Applications and utility of three-dimensional in vitro cell culture for therapeutics. Future Pharmacology, 3(1), 213–228. https://doi.org/10.3390/futurepharmacol3010015 CR - Edmondson, R., Broglie, J. J., Adcock, A. F., & Yang, L. (2014). Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay and Drug Development Technologies, 12(4), 207–218. https://doi.org/10.1089/adt.2014.573 CR - Shi, W., Kwon, J., Huang, Y., Tan, J., Uhl, C. G., He, R., et al. (2018). Facile tumor spheroids formation in large quantity with controllable size and high uniformity. Scientific Reports, 8, 1–9. https://doi.org/10.1038/s41598-018-25203-3 CR - Katt, M. E., Placone, A. L., Wong, A. D., Xu, Z. S., & Searson, P. C. (2016). In vitro tumor models: Advantages, disadvantages, variables, and selecting the right platform. Frontiers in Bioengineering and Biotechnology, 4, 12. https://doi.org/10.3389/fbioe.2016.00012 CR - Godoy, P., Hewitt, N. J., Albrecht, U., Andersen, M. E., Ansari, N., Bhattacharya, S., et al. (2013). Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Archives of Toxicology, 87(7), 1315–1530. https://doi.org/10.1007/s00204-013-1078-5 CR - Proctor, W. R., Foster, A. J., Vogt, J., Summers, C., Middleton, B., Pilling, M. A., et al. (2017). Utility of spherical human liver microtissues for prediction of clinical drug-induced liver injury. Archives of Toxicology, 91(8), 2849–2863. https://doi.org/10.1007/s00204-017-2002-1 CR - Gori, M., Giannitelli, S. M., Torre, M., Mozetic, P., Abbruzzese, F., Trombetta, M., et al. (2020). Biofabrication of hepatic constructs by 3D bioprinting of a cell-laden thermogel: An effective tool to assess drug-induced hepatotoxic response. Advanced Healthcare Materials, 9(12), 2001163. https://doi.org/10.1002/adhm.202001163 CR - Kronemberger, G. S., Matsui, R. A. M., de Castro e Miranda, G. A. S., Granjeiro, J. M., & Baptista, L. S. (2020). Cartilage and bone tissue engineering using adipose stromal/stem cell spheroids as building blocks. World Journal of Stem Cells, 12(2), 110–122. https://doi.org/10.4252/wjsc.v12.i2.110 CR - Laschke, M. W., & Menger, M. D. (2017). Life is 3D: Boosting spheroid function for tissue engineering. Trends in Biotechnology, 35(2), 133–144. https://doi.org/10.1016/j.tibtech.2016.08.004 CR - Zeng, J., Chen, X., Zhang, J., Qin, Y., Zhang, K., Li, X., et al. (2022). Stem cell spheroids production for wound healing with a reversible porous hydrogel. Materials Today Advances, 15, 100269. https://doi.org/10.1016/j.mtadv.2022.100269 CR - Song, L., Yuan, X., Jones, Z., Griffin, K., Zhou, Y., Ma, T., et al. (2019). Assembly of human stem cell-derived cortical spheroids and vascular spheroids to model 3D brain-like tissues. Scientific Reports, 9, 5977. https://doi.org/10.1038/s41598-019-42439-9 CR - Liu, W. M., Zhou, X., Chen, C. Y., Lv, D. D., Huang, W. J., Peng, Y., et al. (2021). Establishment of functional liver spheroids from human hepatocyte-derived liver progenitor-like cells for cell therapy. Frontiers in Bioengineering and Biotechnology, 9, 738081. https://doi.org/10.3389/fbioe.2021.738081 CR - Campbell, M., Chabria, M., Figtree, G. A., Polonchuk, L., & Gentile, C. (2018). Stem cell-derived cardiac spheroids as 3D in vitro models of the human heart microenvironment. Methods in Molecular Biology, 2002, 51–59. https://doi.org/10.1007/7651_2018_187 CR - Hautefort, I., Poletti, M., Papp, D., & Korcsmaros, T. (2022). Everything you always wanted to know about organoid-based models (and never dared to ask). Cellular and Molecular Gastroenterology and Hepatology, 14(2), 311–331. https://doi.org/10.1016/j.jcmgh.2022.04.012 CR - Lewis, J., & Holm, S. (2022). Organoid biobanking, autonomy and the limits of consent. Bioethics, 36(8), 742–756. https://doi.org/10.1111/bioe.13047 CR - Nie, X., Liang, Z., Li, K., Yu, H., Huang, Y., Ye, L., et al. (2021). Novel organoid model in drug screening: Past, present, and future. Liver Research, 5(2), 72–78. https://doi.org/10.1016/j.livres.2021.05.003 CR - Schwartz, M. P., Hou, Z., Propson, N. E., Zhang, J., Engstrom, C. J., Costa, V. S., et al. (2015). Human pluripotent stem cell-derived neural constructs for predicting neural toxicity. Proceedings of the National Academy of Sciences of the United States of America, 112(40), 12516–12521. https://doi.org/10.1073/pnas.1516645112 CR - Shinozawa, T., Kimura, M., Cai, Y., Saiki, N., Yoneyama, Y., Ouchi, R., et al. (2021). High-fidelity drug-induced liver injury screen using human pluripotent stem cell–derived organoids. Gastroenterology, 160(3), 831–846.e10. https://doi.org/10.1053/j.gastro.2020.10.002 CR - Meier, M. A., Nuciforo, S., Coto-Llerena, M., Gallon, J., Matter, M. S., Ercan, C., et al. (2022). Patient-derived tumor organoids for personalized medicine in a patient with rare hepatocellular carcinoma with neuroendocrine differentiation: A case report. Communications Medicine, 2, 150. https://doi.org/10.1038/s43856-022-00150-3 CR - Zhao, Z., Chen, X., Dowbaj, A. M., Sljukic, A., Bratlie, K., Lin, L., et al. (2022). Organoids. Nature Reviews Methods Primers, 2(1), 1–21. https://doi.org/10.1038/s43586-022-00174-y CR - Revokatova, D., Bikmulina, P., Heydari, Z., Solovieva, A., Vosough, M., Shpichka, A., et al. (2025). Getting blood out of a stone: Vascularization via spheroids and organoids in 3D bioprinting. Cells, 14(9), 665. https://doi.org/10.3390/cells14090665 CR - Velasco, V., Shariati, S. A., & Esfandyarpour, R. (2020). Microtechnology-based methods for organoid models. Microsystems & Nanoengineering, 6(1), 1–13. https://doi.org/10.1038/s41378-020-00185-3 CR - Topal, T., Hong, X., Xue, X., Fan, Z., Kanetkar, N., Nguyen, J. T., et al. (2018). Acoustic tweezing cytometry induces rapid initiation of human embryonic stem cell differentiation. Scientific Reports, 8, 1–11. https://doi.org/10.1038/s41598-018-30939-z CR - Topal, T., Fan, Z., Deng, L. Y., Krebsbach, P. H., & Deng, C. X. (2019). Integrin-targeted cyclic forces accelerate neural tube-like rosette formation from human embryonic stem cells. Advanced Biosystems, 3(10), 1900064. https://doi.org/10.1002/adbi.201900064 CR - Muñiz, A. J., Topal, T., Brooks, M. D., Sze, A., Kim, D. H., Jordahl, J., et al. (2023). Engineered extracellular matrices facilitate brain organoids from human pluripotent stem cells. Annals of Clinical and Translational Neurology, 10(7), 1239–1253. https://doi.org/10.1002/acn3.51820 CR - Hu, H., Gehart, H., Artegiani, B., López-Iglesias, C., Dekkers, F., Basak, O., et al. (2018). Long-term expansion of functional mouse and human hepatocytes as 3D organoids. Cell, 175(6), 1591–1606.e19. https://doi.org/10.1016/j.cell.2018.11.013 CR - Drost, J., Karthaus, W. R., Gao, D., Driehuis, E., Sawyers, C. L., Chen, Y., et al. (2016). Organoid culture systems for prostate epithelial and cancer tissue. Nature Protocols, 11(2), 347–358. https://doi.org/10.1038/nprot.2016.006 CR - Makadia, H. K., & Siegel, S. J. (2011). Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 3(3), 1377–1397. https://doi.org/10.3390/polym3031377 CR - Lin, C. C., & Anseth, K. S. (2009). PEG hydrogels for the controlled release of biomolecules in regenerative medicine. Pharmaceutical Research, 26(3), 631–643. https://doi.org/10.1007/s11095-008-9801-2 CR - Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64(Suppl), 18–23. https://doi.org/10.1016/j.addr.2012.09.010 CR - Madduma-Bandarage, U. S. K., & Madihally, S. V. (2021). Synthetic hydrogels: Synthesis, novel trends, and applications. Journal of Applied Polymer Science, 138(16), 50376. https://doi.org/10.1002/app.50376 CR - Saheli, M., Sepantafar, M., Pournasr, B., Farzaneh, Z., Vosough, M., Piryaei, A., et al. (2018). Three-dimensional liver-derived extracellular matrix hydrogel promotes liver organoids function. Journal of Cellular Biochemistry, 119(5), 4320–4333. https://doi.org/10.1002/jcb.26622 CR - Meenach, S. A., Tsoras, A. N., McGarry, R. C., Mansour, H. M., Hilt, J. Z., & Anderson, K. W. (2016). Development of three-dimensional lung multicellular spheroids in air- and liquid-interface culture for the evaluation of anticancer therapeutics. International Journal of Oncology, 48(5), 1701–1709. https://doi.org/10.3892/ijo.2016.3376 CR - Radtke, A. L., & Herbst-Kralovetz, M. M. (2012). Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models. Journal of Visualized Experiments, 62, e3868. https://doi.org/10.3791/3868 CR - Hoarau-Véchot, J., Rafii, A., Touboul, C., & Pasquier, J. (2018). Halfway between 2D and animal models: Are 3D cultures the ideal tool to study cancer-microenvironment interactions? International Journal of Molecular Sciences, 19(1), 181. https://doi.org/10.3390/ijms19010181 CR - Almeqdadi, M., Mana, M. D., Roper, J., & Yilmaz, Ö. H. (2019). Gut organoids: Mini-tissues in culture to study intestinal physiology and disease. American Journal of Physiology-Cell Physiology, 317(3), C405–C419. https://doi.org/10.1152/ajpcell.00300.2017 CR - Harrison, S. P., Baumgarten, S. F., Verma, R., Lunov, O., Dejneka, A., & Sullivan, G. J. (2021). Liver organoids: Recent developments, limitations and potential. Frontiers in Medicine (Lausanne), 8, 574047. https://doi.org/10.3389/fmed.2021.574047 CR - Nishinakamura, R. (2019). Human kidney organoids: Progress and remaining challenges. Nature Reviews Nephrology, 15, 613–624. https://doi.org/10.1038/s41581-019-0176-x CR - Qian, X., Song, H., & Ming, G. L. (2019). Brain organoids: Advances, applications and challenges. Development, 146, dev166074. https://doi.org/10.1242/dev.166074 CR - Papamichail, L., Koch, L. S., Veerman, D., Broersen, K., & van der Meer, A. D. (2025). Organoids-on-a-chip: Microfluidic technology enables culture of organoids with enhanced tissue function and potential for disease modeling. Frontiers in Bioengineering and Biotechnology, 13, 1515340. https://doi.org/10.3389/fbioe.2025.1515340 CR - Przepiorski, A., Sander, V., Tran, T., Hollywood, J. A., Sorrenson, B., Shih, J. H., et al. (2018). A simple bioreactor-based method to generate kidney organoids from pluripotent stem cells. Stem Cell Reports, 11(2), 470–484. https://doi.org/10.1016/j.stemcr.2018.06.018 CR - Keller, G. M. (1995). In vitro differentiation of embryonic stem cells. Current Opinion in Cell Biology, 7(6), 862–869. https://doi.org/10.1016/0955-0674(95)80071-9 CR - Rimann, M., & Graf-Hausner, U. (2012). Synthetic 3D multicellular systems for drug development. Current Opinion in Biotechnology, 23(5), 803–809. https://doi.org/10.1016/j.copbio.2012.01.011 CR - Kuo, C. T., Wang, J. Y., Lin, Y. F., Wo, A. M., Chen, B. P. C., & Lee, H. (2017). Three-dimensional spheroid culture targeting versatile tissue bioassays using a PDMS-based hanging drop array. Scientific Reports, 7(1), 42831. https://doi.org/10.1038/s41598-017-04718-1 CR - Gupta, N., Liu, J. R., Patel, B., Solomon, D. E., Vaidya, B., & Gupta, V. (2016). Microfluidics-based 3D cell culture models: Utility in novel drug discovery and delivery research. Bioengineering & Translational Medicine, 1(1), 63–81. https://doi.org/10.1002/btm2.10013 CR - Kelm, J. M., Timmins, N. E., Brown, C. J., Fussenegger, M., & Nielsen, L. K. (2003). Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechnology and Bioengineering, 83(2), 173–180. https://doi.org/10.1002/bit.10655 CR - Hoarau-Véchot, J., Rafii, A., Touboul, C., & Pasquier, J. (2018). Halfway between 2D and animal models: Are 3D cultures the ideal tool to study cancer–microenvironment interactions? International Journal of Molecular Sciences, 19(1), 181. https://doi.org/10.3390/ijms19010181 CR - Sutherland, R. M., McCredie, J. A., & Inch, W. R. (1971). Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. Journal of the National Cancer Institute, 46(1), 113–120. https://doi.org/10.1093/jnci/46.1.113 CR - Sutherland, R. M., Inch, W. R., McCredie, J. A., & Kruuv, J. (1970). A multi-component radiation survival curve using an in vitro tumour model. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine, 18(5), 491–495. https://doi.org/10.1080/09553007014551401 CR - Dzobo, K., Motaung, K. S. C. M., & Adesida, A. (2019). Recent trends in decellularized extracellular matrix bioinks for 3D printing: An updated review. International Journal of Molecular Sciences, 20(18), 4628. https://doi.org/10.3390/ijms20184628 CR - Li, X., Ootani, A., & Kuo, C. (2016). An air–liquid interface culture system for 3D organoid culture of diverse primary gastrointestinal tissues. Methods in Molecular Biology, 1422, 33–40. https://doi.org/10.1007/978-1-4939-3603-8_4 CR - Tseng, H., Gage, J. A., Raphael, R. M., Moore, R. H., Killian, T. C., Grande-Allen, K. J., & Souza, G. R. (2013). Assembly of a three-dimensional multitype bronchiole coculture model using magnetic levitation. Tissue Engineering Part C: Methods, 19(8), 665–675. https://doi.org/10.1089/ten.tec.2012.0157 CR - Nath, S., & Devi, G. R. (2016). Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacology & Therapeutics, 163, 94–108. https://doi.org/10.1016/j.pharmthera.2016.03.013 CR - Marques, I. A., Fernandes, C., Tavares, N. T., Pires, A. S., Abrantes, A. M., & Botelho, M. F. (2022). Magnetic-based human tissue 3D cell culture: A systematic review. International Journal of Molecular Sciences, 23(20), 12681. https://doi.org/10.3390/ijms232012681 CR - Souza, G. R., Molina, J. R., Raphael, R. M., Ozawa, M. G., Stark, D. J., Levin, C. S., Bronk, L. F., Ananta, J. S., Mandelin, J., Georgescu, M.-M., Bankson, J. A., Gelovani, J. G., Killian, T. C., Arap, W., & Pasqualini, R. (2010). Three-dimensional tissue culture based on magnetic cell levitation. Nature Nanotechnology, 5, 291–296. https://doi.org/10.1038/nnano.2010.23 CR - Murphy, S. V., & Atala, A. (2014). 3D bioprinting of tissues and organs. Nature Biotechnology, 32(8), 773–785. https://doi.org/10.1038/nbt.2958 CR - Cho, H., Bae, I., Chung, H., et al. (2004). Effects of hair follicle dermal sheath cells in the reconstruction of skin equivalents. Journal of Dermatological Science. CR - Park, H., Lim, D. J., Sung, M., Lee, S. H., Na, D., & Park, H. (2016). Microengineered platforms for co-cultured mesenchymal stem cells towards vascularized bone tissue engineering. Tissue Engineering and Regenerative Medicine, 13(5), 465–474. https://doi.org/10.1007/s13770-016-9080-7 CR - Shim, J. H., Jang, K. M., Hahn, S. K., Park, J. Y., Jung, H., Oh, K., Park, K. M., Yeom, J., Park, S. H., and Kim, S. W. (2016). Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication, 8, 014102. https://doi.org/10.1088/1758-5090/8/1/014102. CR - Park, J. Y., Shim, J.-H., Choi, S.-A., Jang, J., Kim, M., Lee, S. H., & Cho, D. W. (2015). 3D printing technology to control BMP-2 and VEGF delivery spatially and temporally to promote large-volume bone regeneration. Journal of Materials Chemistry B, 3, 5415–5424. https://doi.org/10.1039/c5tb00637f CR - Gao, G., Huang, Y., Schilling, A. F., Hubbell, K., & Cui, X. (2018). Organ bioprinting: Are we there yet? Advanced Healthcare Materials, 7, 1701018. https://doi.org/10.1002/adhm.201701018 CR - Zhang, Y. S., Arneri, A., Bersini, S., Shin, S. R., Zhu, K., Goli-Malekabadi, Z., Aleman, J., & Colosi, C. (2016). Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Biomaterials, 110, 45–59. https://doi.org/10.1016/j.biomaterials.2016.09.003 CR - Noor, N., Shapira, A., Edri, R., Gal, I., Wertheim, L., & Dvir, T. (2019). 3D printing of personalized thick and perfusable cardiac patches and hearts. Advanced Science, 6, 1900344. https://doi.org/10.1002/advs.201900344 CR - Huh, D., Matthews, B. D., Mammoto, A., Montoya-Zavala, M., Yuan, H. H., & Ingber, D. E. (2010). Reconstituting organ-level lung functions on a chip. Science, 328(5986), 1662–1668. https://doi.org/10.1126/science.1188302 CR - Park, J., Koito, H., Li, J., & Han, A. (2009). Microfluidic compartmentalized co-culture platform for CNS axon myelination research. Biomedical Microdevices, 11, 1145–1153. https://doi.org/10.1007/s10544-009-9331-7 CR - Yu, Y., Zhou, T. T., & Cao, L. (2023). Use and application of organ-on-a-chip platforms in cancer research. Journal of Cell Communication and Signaling, 17, 1163–1176. https://doi.org/10.1007/s12079-023-00790-7 CR - Singh, D., Mathur, A., Arora, S., Roy, S., & Mahindroo, N. (2022). Journey of organ-on-a-chip technology and its role in future healthcare scenario. Applied Surface Science Advances, 9, 100246. https://doi.org/10.1016/j.apsadv.2022.100246 CR - Caballero, D., Kaushik, S., Correlo, V. M., Oliveira, J. M., Reis, R. L., & Kundu, S. C. (2017). Organ-on-chip models of cancer metastasis for future personalized medicine: From chip to the patient. Biomaterials, 149, 98–115. https://doi.org/10.1016/j.biomaterials.2017.10.005 CR - Huh, D. (2015). A human breathing lung-on-a-chip. Annals of the American Thoracic Society, 12(Supplement 1), S42–S44. https://doi.org/10.1513/annalsats.201410-442MG CR - Palucka, A. K., & Coussens, L. M. (2016). The basis of oncoimmunology. Cell, 164, 1233–1247. https://doi.org/10.1016/j.cell.2016.01.049 CR - Quail, D. F., & Joyce, J. A. (2013). Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 19, 1423–1437. https://doi.org/10.1038/nm.3394 CR - Gajewski, T. F., Schreiber, H., & Fu, Y. X. (2013). Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology, 14, 1014–1022. https://doi.org/10.1038/ni.2703 CR - Houot, R., Kohrt, H. E., Marabelle, A., & Levy, R. (2011). Targeting immune effector cells to promote antibody-induced cytotoxicity in cancer immunotherapy. Trends in Immunology, 32, 510–516. https://doi.org/10.1016/j.it.2011.07.003 CR - Demaria, O., Cornen, S., Daëron, M., Morel, Y., Medzhitov, R., & Vivier, E. (2019). Harnessing innate immunity in cancer therapy. Nature, 574, 45–56. https://doi.org/10.1038/s41586-019-1593-5 CR - Yuki, K., Cheng, N., Nakano, M., & Kuo, C. J. (2020). Organoid models of tumor immunology. Trends in Immunology, 41, 652–664. https://doi.org/10.1016/j.it.2020.06.010 CR - Riedl, A., Schlederer, M., Pudelko, K., Stadler, M., Walter, S., Unterleuthner, D., et al. (2017). Comparison of cancer cells in 2D vs 3D culture reveals differences in AKT-mTOR-S6K signaling and drug responses. Journal of Cell Science, 130, 203–218. https://doi.org/10.1242/jcs.188102 CR - Neal, J. T., Li, X., Zhu, J., Giangarra, V., Grzeskowiak, C. L., Ju, J., et al. (2018). Organoid modeling of the tumor immune microenvironment. Cell, 175, 1972–1988.e16. https://doi.org/10.1016/j.cell.2018.11.021 CR - Sontheimer-Phelps, A., Hassell, B. A., & Ingber, D. E. (2019). Modelling cancer in microfluidic human organs-on-chips. Nature Reviews Cancer, 19, 65–81. https://doi.org/10.1038/s41568-018-0104-6 CR - Aref, A. R., Campisi, M., Ivanova, E., Portell, A., Larios, D., Piel, B. P., et al. (2018). 3D microfluidic: Ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade. Lab on a Chip, 18, 3129–3143. https://doi.org/10.1039/c8lc00322j CR - Deng, J., Wang, E. S., Jenkins, R. W., Li, S., Dries, R., Yates, K., et al. (2018). CDK4/6 inhibition augments antitumor immunity by enhancing T-cell activation. Cancer Discovery, 8, 216–233. https://doi.org/10.1158/2159-8290.cd-17-0915 CR - Jenkins, R. W., Aref, A. R., Lizotte, P. H., Ivanova, E., Stinson, S., Zhou, C. W., et al. (2018). Ex vivo profiling of PD-1 blockade using organotypic tumor spheroids. Cancer Discovery, 8, 196–215. https://doi.org/10.1158/2159-8290.cd-17-0833 CR - Gunti, S., Hoke, A. T. K., Vu, K. P., & London, N. R. (2021). Organoid and spheroid tumor models: Techniques and applications. Cancers (Basel), 13, 874. https://doi.org/10.3390/cancers13040874 CR - Lv, J., Du, X., Wang, M., Su, J., Wei, Y., & Xu, C. (2024). Construction of tumor organoids and their application to cancer research and therapy. Theranostics, 14, 1101–1125. https://doi.org/10.7150/thno.91362 CR - Lancaster, M. A., & Knoblich, J. A. (2014). Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 345, 1247125. https://doi.org/10.1126/science.1247125 CR - Licata, J. P., Schwab, K. H., Har-El, Y., Gerstenhaber, J. A., & Lelkes, P. I. (2023). Bioreactor technologies for enhanced organoid culture. International Journal of Molecular Sciences, 24(14), 11427. https://doi.org/10.3390/ijms241411427 CR - Kretzschmar, K., & Clevers, H. (2016). Organoids: Modeling development and the stem cell niche in a dish. Developmental Cell, 38, 590–600. https://doi.org/10.1016/j.devcel.2016.08.014 CR - Hirschhaeuser, F., Menne, H., Dittfeld, C., West, J., Mueller-Klieser, W., & Kunz-Schughart, L. A. (2010). Multicellular tumor spheroids: An underestimated tool is catching up again. Journal of Biotechnology, 148, 3–15. https://doi.org/10.1016/j.jbiotec.2010.01.012 CR - Stacey, G. (2006). Primary cell cultures and immortal cell lines. Encyclopedia of Life Sciences. https://doi.org/10.1038/npg.els.0003960 CR - Young, M., & Reed, K. R. (2016). Organoids as a model for colorectal cancer. Current Colorectal Cancer Reports, 12, 281–287. https://doi.org/10.1007/s11888-016-0335-4 CR - Hassanshahi, J., Mirzahosseini-Pourranjbar, A., Hajializadeh, Z., & Kaeidi, A. (2020). Anticancer and cytotoxic effects of troxerutin on HeLa cell line: An in-vitro model of cervical cancer. Molecular Biology Reports, 47, 6135–6142. https://doi.org/10.1007/s11033-020-05694-y CR - Burdall, S. E., Hanby, A. M., Lansdown, M. R. J., & Speirs, V. (2003). Breast cancer cell lines: Friend or foe? Breast Cancer Research, 5, 89–95. https://doi.org/10.1186/bcr577 CR - Arı, M., Karul, A., & Sakarya, S. (2018). Investigation of antiproliferative, apoptotic and antioxidant effects of oleuropein and vitamin D on breast cancer cell lines (MCF-7). Proceedings, 2(25), 1534. https://doi.org/10.3390/proceedings2251534 CR - Sachs, N., de Ligt, J., Kopper, O., Gogola, E., Bounova, G., Weeber, F., et al. (2018). A living biobank of breast cancer organoids captures disease heterogeneity. Cell, 172, 373–386.e10. https://doi.org/10.1016/j.cell.2017.11.010 CR - Liebau, S., Achberger, K., Breunig, M., Noorani, S., Nelson, S. R., Conlon, N. T., et al. (2022). Pancreatic cancer 3D cell line organoids (CLOs) maintain the phenotypic characteristics of organoids and accurately reflect the cellular architecture and heterogeneity in vivo. Organoids, 1, 168–183. https://doi.org/10.3390/organoids1020013 CR - Balkwill, F. R., Capasso, M., & Hagemann, T. (2012). The tumor microenvironment at a glance. Journal of Cell Science, 125, 5591–5596. https://doi.org/10.1242/jcs.116392 CR - Emon, B., Bauer, J., Jain, Y., Jung, B., & Saif, T. (2018). Biophysics of tumor microenvironment and cancer metastasis - A mini review. Computational and Structural Biotechnology Journal, 16, 279–287. https://doi.org/10.1016/j.csbj.2018.07.003 CR - Hanahan, D., & Coussens, L. M. (2012). Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 21, 309–322. https://doi.org/10.1016/j.ccr.2012.02.022 CR - Neesse, A., Bauer, C. A., Öhlund, D., Lauth, M., Buchholz, M., Michl, P., et al. (2019). Stromal biology and therapy in pancreatic cancer: Ready for clinical translation? Gut, 68, 159–171. https://doi.org/10.1136/gutjnl-2018-316451 CR - Belgodere, J. A., King, C. T., Bursavich, J. B., Burow, M. E., Martin, E. C., & Jung, J. P. (2018). Engineering breast cancer microenvironments and 3D bioprinting. Frontiers in Bioengineering and Biotechnology, 6, 66. https://doi.org/10.3389/fbioe.2018.00066 CR - Amrutkar, M., & Gladhaug, I. P. (2017). Pancreatic cancer chemoresistance to gemcitabine. Cancers (Basel), 9, 157. https://doi.org/10.3390/cancers9110157 CR - Provenzano, P. P., Eliceiri, K. W., Campbell, J. M., Inman, D. R., White, J. G., & Keely, P. J. (2006). Collagen reorganization at the tumor-stromal interface facilitates local invasion. BMC Medicine, 4, 38. https://doi.org/10.1186/1741-7015-4-38 CR - Provenzano, P. P., Inman, D. R., Eliceiri, K. W., Knittel, J. G., Yan, L., Rueden, C. T., et al. (2008). Collagen density promotes mammary tumor initiation and progression. BMC Medicine, 6, 11. https://doi.org/10.1186/1741-7015-6-11 CR - Egeblad, M., Rasch, M. G., & Weaver, V. M. (2010). Dynamic interplay between the collagen scaffold and tumor evolution. Current Opinion in Cell Biology, 22, 697–706. https://doi.org/10.1016/j.ceb.2010.08.015 CR - Furuta, S., Ren, G., Mao, J. H., & Bissell, M. J. (2018). Laminin signals initiate the reciprocal loop that informs breast-specific gene expression and homeostasis by activating NO, p53, and microRNAs. eLife, 7, e26148. https://doi.org/10.7554/elife.26148 CR - Kim, B. G., An, H. J., Kang, S., Choi, Y. P., Gao, M. Q., Park, H., et al. (2011). Laminin-332-rich tumor microenvironment for tumor invasion in the interface zone of breast cancer. American Journal of Pathology, 178, 373–381. https://doi.org/10.1016/j.ajpath.2010.11.028 CR - Deng, Z., Cheng, Z., Xiang, X., Yan, J., Zhuang, X., Liu, C., et al. (2012). Tumor cell cross talk with tumor-associated leukocytes leads to induction of tumor exosomal fibronectin and promotes tumor progression. American Journal of Pathology, 180, 390–398. https://doi.org/10.1016/j.ajpath.2011.09.023 CR - Jagadeeshan, S., Krishnamoorthy, Y. R., Singhal, M., Subramanian, A., Mavuluri, J., Lakshmi, A., et al. (2015). Transcriptional regulation of fibronectin by p21-activated kinase-1 modulates pancreatic tumorigenesis. Oncogene, 34, 455–464. https://doi.org/10.1038/ONC.2013.576 CR - Liu, T., Han, C., Wang, S., Fang, P., Ma, Z., Xu, L., et al. (2019). Cancer-associated fibroblasts: An emerging target of anti-cancer immunotherapy. Journal of Hematology & Oncology, 12. https://doi.org/10.1186/S13045-019-0770-1 CR - Gascard, P., & Tlsty, T. D. (2016). Carcinoma-associated fibroblasts: Orchestrating the composition of malignancy. Genes & Development, 30, 1002–1019. https://doi.org/10.1101/GAD.279737.116 CR - Devarasetty, M., Forsythe, S. D., & Shelkey, E., Soker, S. (2020). In vitro modeling of the tumor microenvironment in tumor organoids. Tissue Engineering and Regenerative Medicine, 17, 759–771. https://doi.org/10.1007/S13770-020-00258-4 CR - Spiering, M. J. (2015). Primer on the immune system. Alcohol Research, 37, 171. CR - Goodrich, J. K., Waters, J. L., Poole, A. C., Sutter, J. L., Koren, O., Blekhman, R., et al. (2017). İmmün sistem ve barsak mikrobiyotası. Journal of Biotechnology and Strategic Health Research, 1, 7–16. https://doi.org/10.1016/J.CELL.2014.09.053 CR - Songu, M., & Katılmış, H. (2012). Enfeksiyondan korunma ve immün sistem. Journal of Medical Updates, 2, 31–42. https://doi.org/10.2399/JMU.2012001006 CR - Diniz, G., Yaşın, Y., Çoban, C., Evcimen, Ş., & Karakayalı, M. (2022). Immune system: Is a trusted friend, is a collaborative enemy? Forbes Journal of Medicine, 3. https://doi.org/10.4274/forbes.galenos.2021.30974 CR - Janeway, C. A., & Medzhitov, R. (2002). Innate immune recognition. Annual Review of Immunology, 20, 197–216. https://doi.org/10.1146/ANNUREV.IMMUNOL.20.083001.084359 CR - Matzinger, P. (1994). Tolerance, danger, and the extended family. Annual Review of Immunology, 12, 991–1045. https://doi.org/10.1146/ANNUREV.IY.12.040194.005015 CR - Solchaga, L. A., Tognana, E., Penick, K., Baskaran, H., Goldberg, V. M., Caplan, A. I., et al. (2006). A rapid seeding technique for the assembly of large cell/scaffold composite construct. Tissue Engineering, 12, 1851–1863. https://doi.org/10.1089/TEN.2006.12.1851 CR - Bogoslowski, A., An, M., & Penninger, J. M. (2023). Incorporating immune cells into organoid models: Essential for studying human disease. Organoids, 2, 140–155. https://doi.org/10.3390/ORGANOIDS2030011 CR - Collin de l’Hortet, A., Takeishi, K., Guzman-Lepe, J., Morita, K., Achreja, A., Popovic, B., et al. (2019). Generation of human fatty livers using custom-engineered induced pluripotent stem cells with modifiable SIRT1 metabolism. Cell Metabolism, 30, 385–401.e9. https://doi.org/10.1016/J.CMET.2019.06.017 CR - Rana, D., Arulkumar, S., Vishwakarma, A., & Ramalingam, M. (2015). Considerations on designing scaffold for tissue engineering. In Stem Cell Biology and Tissue Engineering in Dental Sciences (pp. 133–148). https://doi.org/10.1016/B978-0-12-397157-9.00012-6 CR - Rogoz, A., Reis, B. S., Karssemeijer, R. A., & Mucida, D. (2015). A 3-D enteroid-based model to study T-cell and epithelial cell interaction. Journal of Immunological Methods, 421, 89–95. https://doi.org/10.1016/J.JIM.2015.03.014 CR - Popova, G., Soliman, S. S., Kim, C. N., Keefe, M. G., Hennick, K. M., Jain, S., et al. (2021). Human microglia states are conserved across experimental models and regulate neural stem cell responses in chimeric organoids. Cell Stem Cell, 28, 2153–2166.e6. https://doi.org/10.1016/J.STEM.2021.08.015 CR - Noel, G., Baetz, N. W., Staab, J. F., Donowitz, M., Kovbasnjuk, O., Pasetti, M. F., et al. (2017). A primary human macrophage-enteroid co-culture model to investigate mucosal gut physiology and host-pathogen interactions. Scientific Reports, 7, 1–14. https://doi.org/10.1038/srep45270 CR - Koh, V., Chakrabarti, J., Torvund, M., Steele, N., Hawkins, J. A., Ito, Y., et al. (2021). Hedgehog transcriptional effector GLI mediates mTOR-induced PD-L1 expression in gastric cancer organoids. Cancer Letters, 518, 59–71. https://doi.org/10.1016/J.CANLET.2021.06.007 CR - Dijkstra, K. K., Cattaneo, C. M., Weeber, F., Chalabi, M., van de Haar, J., Fanchi, L. F., et al. (2018). Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell, 174, 1586–1598.e12. https://doi.org/10.1016/J.CELL.2018.07.009 CR - Vlachogiannis, G., Hedayat, S., Vatsiou, A., Jamin, Y., Fernández-Mateos, J., Khan, K., et al. (2018). Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science, 359(6378), 920–926. https://doi.org/10.1126/science.aao2774 CR - Seo, H. R., Han, H. J., Lee, Y., Noh, Y. W., Cho, S. J., & Kim, J. H. (2022). Human pluripotent stem cell-derived alveolar organoid with macrophages. International Journal of Molecular Sciences, 23, 9211. https://doi.org/10.3390/IJMS23169211/S1 CR - Wu, W., Li, X., & Yu, S. (2022). Patient-derived tumour organoids: A bridge between cancer biology and personalised therapy. Acta Biomaterialia, 146, 23–36. https://doi.org/10.1016/J.ACTBIO.2022.04.050 CR - Noorintan, S. T., Angelius, C., & Torizal, F. G. (2024). Organoid models in cancer immunotherapy: Bioengineering approach for personalized treatment. Immuno, 4, 312–324. https://doi.org/10.3390/IMMUNO4040020 CR - Yao, N., Jing, N., Lin, J., Niu, W., Yan, W., Yuan, H., et al. (2025). Patient-derived tumor organoids for cancer immunotherapy: Culture techniques and clinical application. Investigational New Drugs, 1–11. https://doi.org/10.1007/S10637-025-01523-W/TABLES/2 CR - Qiu, Y., Su, M., Liu, L., Tang, Y., Pan, Y., & Sun, J. (2021). Clinical application of cytokines in cancer immunotherapy. Drug Design, Development and Therapy, 15, 2269–2287. https://doi.org/10.2147/DDDT.S308578 CR - Magré, L., Verstegen, M. M. A., Buschow, S., Van Der Laan, L. J. W., Peppelenbosch, M., & Desai, J. (2023). Emerging organoid-immune co-culture models for cancer research: From oncoimmunology to personalized immunotherapies. Journal for ImmunoTherapy of Cancer, 11, e006290. https://doi.org/10.1136/JITC-2022-006290 CR - Votanopoulos, K. I., Forsythe, S., Sivakumar, H., Mazzocchi, A., Aleman, J., Miller, L., et al. (2020). Model of patient-specific immune-enhanced organoids for immunotherapy screening: Feasibility study. Annals of Surgical Oncology, 27, 1956–1967. https://doi.org/10.1245/S10434-019-08143-8/FIGURES/4 CR - Forsythe, S. D., Erali, R. A., Sasikumar, S., Laney, P., Shelkey, E., D’Agostino, R., et al. (2021). Organoid platform in preclinical investigation of personalized immunotherapy efficacy in appendiceal cancer: Feasibility study. Clinical Cancer Research, 27, 5141–5151. https://doi.org/10.1158/1078-0432.CCR-21-0982/673891/AM/ORGANOID-PLATFORM-IN-PRECLINICAL-INVESTIGATION-OF CR - Johnston, A., Wan, Z., Chen, T., Lim, Y., Lee, C., Du, W., et al. (2023). Abstract 4710: Novel 3D cytotoxicity assay to assess the impact of chimeric antigen receptor (CAR) domain design on the tumor infiltration and cytotoxicity efficacy of CAR T-cell therapies for solid tumors. Cancer Research, 83, 4710. https://doi.org/10.1158/1538-7445.AM2023-4710 CR - Drost, J., & Clevers, H. (2018). Organoids in cancer research. Nature Reviews Cancer, 18, 407–418. https://doi.org/10.1038/s41568-018-0007-6 CR - Eralp, Y. (2022). Application of mRNA technology in cancer therapeutics. Vaccines (Basel), 10. https://doi.org/10.3390/VACCINES10081262 CR - Faghfuri, E., Pourfarzi, F., Faghfouri, A. H., Abdoli Shadbad, M., Hajiasgharzadeh, K., & Baradaran, B. (2021). Recent developments of RNA-based vaccines in cancer immunotherapy. Expert Opinion on Biological Therapy, 21, 201–218. https://doi.org/10.1080/14712598.2020.1815704 CR - Liu, Y., Chen, J., Xu, Y., & Sun, Q. (2022). Novel insight into the role of immunotherapy in gastrointestinal cancer (Review). Molecular and Clinical Oncology, 17. https://doi.org/10.3892/MCO.2022.2590 CR - Karimi-Sani, I., Molavi, Z., Naderi, S., Mirmajidi, S. H., Zare, I., Naeimzadeh, Y., et al. (2024). Personalized mRNA vaccines in glioblastoma therapy: From rational design to clinical trials. Journal of Nanobiotechnology, 22, 1–31. https://doi.org/10.1186/S12951-024-02882-X CR - Van der Bruggen, P., Zhang, Y., Chaux, P., Stroobant, V., Panichelli, C., Schultz, E. S., et al. (2002). Tumor-specific shared antigenic peptides recognized by human T cells. Immunological Reviews, 188, 51–64. https://doi.org/10.1034/J.1600-065X.2002.18806.X CR - Shiihara, M., & Furukawa, T. (2022). Application of patient-derived cancer organoids to personalized medicine. Journal of Personalized Medicine, 12, 789. https://doi.org/10.3390/JPM12050789 CR - Hwang, T. J., Carpenter, D., Lauffenburger, J. C., Wang, B., Franklin, J. M., & Kesselheim, A. S. (2016). Failure of investigational drugs in late-stage clinical development and publication of trial results. JAMA Internal Medicine, 176, 1826–1833. https://doi.org/10.1001/JAMAINTERNMED.2016.6008 CR - Dowden, H., & Munro, J. (2019). Trends in clinical success rates and therapeutic focus. Nature Reviews Drug Discovery, 18, 495–496. https://doi.org/10.1038/D41573-019-00074-Z CR - Rassomakhina, N. V., Ryazanova, A. Y., Likhov, A. R., Bruskin, S. A., Maloshenok, L. G., & Zherdeva, V. V. (2024). Tumor organoids: The era of personalized medicine. Biochemistry (Moscow), 89, S127–S147. https://doi.org/10.1134/S0006297924140086 CR - Swain, B., & Maddi, S. (2024). Patient-derived tumor organoids: Generation and applications in disease modeling and personalized therapy. Nature Cell Science, 000, 000–000. https://doi.org/10.61474/NCS.2024.00008 CR - Hastings, A. L. (2021). Text - H.R.1744 - 117th Congress (2021–2022): Humane Research and Testing Act of 2021. U.S. House of Representatives. CR - European Parliament. (2021). Plans and actions to accelerate a transition to innovation without the use of animals in research, regulatory testing and education. 16 September 2021. Retrieved June 30, 2025, from https://www.europarl.europa.eu/doceo/document/TA-9-2021-0387_EN.html CR - Avula, L. R., & Grodzinski, P. (2024). How organ-on-a-chip is advancing cancer research and oncology – A cancer hallmarks’ perspective. Frontiers in Lab on a Chip Technologies, 3, 1487377. https://doi.org/10.3389/frlct.2024.1487377 CR - Arrowsmith, J., & Miller, P. (2013). Trial watch: Phase II and Phase III attrition rates 2011–2012. Nature Reviews Drug Discovery, 12, 569. https://doi.org/10.1038/NRD4090 CR - Kondo, J., & Inoue, M. (2019). Application of cancer organoid model for drug screening and personalized therapy. Cells, 8, 470. https://doi.org/10.3390/CELLS8050470 CR - Bertolini, F., Sukhatme, V. P., & Bouche, G. (2015). Drug repurposing in oncology – patient and health systems opportunities. Nature Reviews Clinical Oncology, 12, 732–742. https://doi.org/10.1038/nrclinonc.2015.130 CR - Fennell, D. A., Summers, Y., Cadranel, J., Benepal, T., Christoph, D., Lal, R., et al. (2016). Malignant pleural mesothelioma. The Lancet, 387, 1941–1953. https://doi.org/10.1016/S0140-6736(15)01250-0 CR - Groth, C., Hu, W., & Atala, A. (2019). Organoid technology for personalized medicine: Advances and challenges. Trends in Molecular Medicine, 25, 451–463. https://doi.org/10.1016/J.MOLMED.2019.02.004 CR - Zhang, X., Claerhout, S., Prat, A., Dobrolecki, L. E., Petrovic, I., Lai, Q., et al. (2013). A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Research, 73, 4885–4897. https://doi.org/10.1158/0008-5472.CAN-13-1081 CR - Ashikawa, K., Takizawa, S., Yamazaki, K., Ito, R., Maeda, T., Miki, Y., et al. (2021). Patient-derived organoids as a preclinical platform for precision medicine in head and neck cancer. Cancer Science, 112, 4218–4230. https://doi.org/10.1111/CAS.15157 CR - Lancaster, M. A., & Knoblich, J. A. (2014). Organogenesis in a dish: Modeling development and disease using organoid technologies. Science, 345, 1247125. https://doi.org/10.1126/science.1247125 CR - Clevers, H. (2016). Modeling development and disease with organoids. Cell, 165, 1586–1597. https://doi.org/10.1016/J.CELL.2016.05.082 UR - https://doi.org/10.63716/guffd.1768168 L1 - https://dergipark.org.tr/tr/download/article-file/5167757 ER -