TY - JOUR T1 - Üniversite Öğrencilerinin Yapay Zekâ Kullanım Düzeylerinin Belirlenmesi TT - Assessing Artıfıcıal Intellıgence Usage Levels Among Unıversıty Students AU - Çatman, Fatma Nur AU - Topsakal, Eda AU - Saatçioğlu, Özkan PY - 2025 DA - November Y2 - 2025 JF - Necmettin Erbakan Üniversitesi Ereğli Eğitim Fakültesi Dergisi JO - NEEEF PB - Necmettin Erbakan Üniversitesi WT - DergiPark SN - 2687-1831 SP - 317 EP - 347 VL - 7 IS - Özel Sayı LA - tr AB - Bu araştırmada üniversite öğrencilerinin yapay zekâ kullanım düzeyleri farklı değişkenler açısından incelenerek mevcut durumun ortaya konulması amaçlanmıştır. Araştırmaya, Türkiye’deki üniversitelerde lisans, pedagojik formasyon, yüksek lisans ve doktora düzeyinde öğrenim gören 1402 öğrenci katılmıştır. Veri toplama sürecinde araştırmacılar tarafından geliştirilen kişisel bilgi formu ve anket kullanılmıştır. Google Form üzerinden elde edilen veriler, IBM SPSS 28.0 ve JASP istatistik programları kullanılarak analiz edilmiştir. Katılımcıların demografik özellikleri frekans ve yüzde dağılımlarıyla özetlenmiş, hipotezler ise ki-kare analizi ile test edilmiştir. Bulgulara göre öğrencilerin büyük çoğunluğu bilgi teknolojilerini ve yapay zekâyı orta ve üzeri düzeyde kullandığını belirtmiştir. Yapay zekâya yönelik ilginin ve öğrencilerin kullanım sıklığının ise yine orta düzeyin üzerinde olduğu ifade edilmiştir. Araştırmada erkek öğrencilerin yapay zekâya yönelik ilgi ve kullanım düzeylerinin kadınlara göre anlamlı şekilde daha yüksek olduğu bulunmuştur. Ancak öğrenme süresi ve kullanım sıklığında cinsiyetler arasında fark görülmemiştir. Ayrıca Mühendislik ve Sağlık Bilimleri Fakültelerindeki öğrencilerin yapay zekâ kullanımı “iyi” düzeyde, Eğitim, Fen-Edebiyat ve Hukuk Fakültelerindeki öğrencilerde ise “orta” düzeyde yaygınlaşmış ve fakülteler arasında anlamlı farklılık bulunmuştur. Öte yandan sınıf düzeyi yükseldikçe yapay zekâya yönelik ilgi ve kullanım düzeyinin arttığı belirtilmiştir. Yaş açısından ise genç öğrencilerin daha sık yapay zekâ kullandıkları, yaşça büyük öğrencilerin ise bilgi teknolojisi becerilerinde üstünlük olduğu belirlenmiştir. Son olarak akademik başarı ile yapay zekâ kullanım sıklığı arasında ilişki saptanmış ve yapay zekâyı sıklıkla kullanan öğencilerin akademik ortalamalarının daha yüksek olduğu ortaya konulmuştur. Bu sonuçlara göre öğrencilerin yapay zekâya yönelik tutum ve davranışlarının demografik ve akademik faktörlerden etkilendiği anlaşılmıştır. Bu bağlamda fakülte bazlı dijital yeterlik programlarının oluşturulması, cinsiyet, yaş gibi farklı değişkenlere yönelik destek mekanizmalarının geliştirilmesi ve öğrencilerin yapay zekâ teknolojilerini bilinçli, etik ve etkili kullanmalarının sağlanması önerilmiştir. KW - Yapay zeka KW - Üniversite öğrencileri KW - Yapay zeka kullanım düzeyi KW - Dijital yeterlik N2 - This study aims to examine the artificial intelligence (AI) usage levels of university students in terms of various variables to reveal the current situation. The research involved 1,402 students enrolled in undergraduate, pedagogical formation, master's, and doctorate programs at universities in Türkiye. A personal information form and a survey developed by the researchers were used for data collection. Data obtained via Google Forms were analyzed using IBM SPSS 28.0 and JASP statistical software. Participants' demographic characteristics were summarized using frequency and percentage distributions, and hypotheses were tested with chi-square analysis. Findings indicate that a large majority of students reported using information technologies and AI at a medium or high level. Interest in AI and the frequency of its use were also stated to be above the medium level. The study found that male students had a significantly higher level of interest and usage in AI compared to females. However, no gender difference was observed in the learning period or frequency of use. Furthermore, AI usage was prevalent at a "good" level among students in Engineering and Health Sciences faculties, while it was at a "medium" level in Education, Arts and Sciences, and Law faculties, with a significant difference observed between faculties. Moreover, as the class level increased, so did the interest and usage levels of AI. In terms of age, younger students were found to use AI more frequently, while older students demonstrated superior information technology skills. Finally, a relationship was identified between academic achievement and the frequency of AI use, revealing that students who frequently use AI had higher grade point averages. These results suggest that students' attitudes and behaviors toward AI are influenced by demographic and academic factors. In this context, recommendations include establishing faculty-specific digital competency programs, developing support mechanisms for different variables such as gender and age, and ensuring students use AI technologies consciously, ethically, and effectively. CR - Adalı, G. K., & Bilgili, A. (2025). Generative AI in higher education: Students’ perspectives on adoption, ethical concerns, and academic ımpact. Acta Infologica, 9(1), 147-166. https://doi.org/10.26650/acin.1670197 CR - Ajuzieogu, U. C. (2025). Human capital ınvestment under AI transition: Educational returns and optimal policy. ResearchGate. https://doi.org/10.13140/RG.2.2.16426.94400 CR - Alan, B., Zengin, F. K., & Keçeci, G. (2024). Yapay zekâ tutum ölçeği (YZTÖ): Geçerlik ve güvenirlik çalışması [Artificial intelligence attitude scale (AIAS): Validity and reliability study]. Cumhuriyet International Journal of Education, 13(4). https://orcid.org/0000-0002-0547-8746 CR - Alimi, A. E., Buraimoh, O. F., Aladesusi, G. A., & Babalola, E. O. (2021). University students’ awareness of, access to, and use of artificial intelligence for learning in Kwara State. Indonesian Journal of Teaching in Science, 1, 91-104. https://d1wqtxts1xzle7.cloudfront.net/103135259/Artificial_Intelligence_for_Learning_in_Kwara_State-libre.pdf?168616952 CR - Almalki, M., Alkhamis, M. A., Khairallah, F. M., & Choukou, M. A. (2025). Perceived artificial intelligence readiness in medical and health sciences education: a survey study of students in Saudi Arabia. BMC Medical Education, 25(1), 439. https://doi.org/10.1186/s12909-025-06995-1 CR - Almaraz-López, C., Almaraz-Menéndez, F., & López-Esteban, C. (2023). Comparative study of the attitudes and perceptions of university students in business administration and management and in education toward artificial intelligence. Education Sciences, 13(6), 609. https://doi.org/10.3390/educsci13060609 CR - Almassaad, A., Alajlan, H., & Alebaikan, R. (2024). Student perceptions of generative artificial intelligence: Investigating utilization, benefits, and challenges in higher education. Systems, 12(10), 385. https://doi.org/10.3390/systems12100385 CR - Arowosegbe, A., Alqahtani, J. S., & Oyelade, T. (2024). Perception of generative AI use in UK higher education. Frontiers in Education, 9, 1463208. https://doi.org/10.3389/feduc.2024.1463208 CR - Aruğaslan, E. (2025). Doktora öğrencilerinin yapay zekâ kullanımı üzerine nitel bir çalışma [A qualitative study on doctoral students’ use of artificial intelligence]. Journal of University Research, 8(1), 36-53. https://doi.org/10.32329/uad.1557111 CR - Asio, J. M. R. (2024). Artificial intelligence (AI) literacy and academic performance of tertiary level students: a preliminary analysis. Social Sciences, Humanities and Education Journal (SHE Journal), 5(2), 309-321. https://www.researchgate.net/publication/383088015 CR - Baker, T., Smith, L., & Anissa, N. (2019). Educ-AI-tion rebooted? Exploring the future of artificial intelligence in schools and colleges. Nesta. https://media.nesta.org.uk/documents/Future_of_AI_and_education_v5_WEB.pdf CR - Banaz, E., & Demirel, O. (2024). Türkçe öğretmen adaylarının yapay zekâ okuryazarlıklarının farklı değişkenlere göre incelenmesi [Investigation of artificial ıntelligence literacy of prospective Turkish teachers according to different variables]. Dokuz Eylül Üniversitesi Buca Eğitim Fakültesi Dergisi, (60), 1516-1529. https://doi.org/10.53444/deubefd.1461048 CR - bin Mohamed, M. Z., Hidayat, R., binti Suhaizi, N. N., bin Mahmud, M. K. H., & binti Baharuddin, S. N. (2022). Artificial intelligence in mathematics education: A systematic literature review. International Electronic Journal of Mathematics Education, 17(3), em0694. https://doi.org/10.29333/iejme/12132 CR - Buele, J., Sabando-García, Á. R., Sabando-García, B. J., & Yánez-Rueda, H. (2025). Ethical use of generative artificial ıntelligence among ecuadorian university students. Sustainability, 17(10), 4435. https://doi.org/10.3390/su17104435 CR - Büyüköztürk, Ş. (2016). Sosyal bilimler için veri analizi el kitabı: İstatistik, araştırma deseni, SPSS uygulamaları ve yorum [Handbook of data analysis for social sciences: Statistics, research design, SPSS applications, and ınterpretation] (31st ed.). Pegem Akademi. CR - Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: Perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(1), 43. https://doi.org/10.1186/s41239-023-00411-8 CR - Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510 CR - Chiu, T. K., Ahmad, Z., Ismailov, M., & Sanusi, I. T. (2024). What are artificial intelligence literacy and competency? A comprehensive framework to support them. Computers and Education Open, 6, 100171. https://doi.org/10.1016/j.caeo.2024.100171 CR - Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). SAGE Publications. CR - Çakan, M., & Akın, A. (2024). Yapay zekâ tutum ve değişime hazır olma: İki ölçek uyarlama çalışması [Attitude towards artificial intelligence and change readiness: Adaptation studies of two scales]. Econder Uluslararası Akademik Dergi, 8(2), 137-167. https://doi.org/10.35342/econder.1544898 CR - Dai, X., Wen, Z., Jiang, J., Liu, H., & Zhang, Y. (2025). How students use AI feedback matters: Experimental evidence on physics achievement and autonomy. arXiv preprint arXiv:2505.08672. https://doi.org/10.48550/arXiv.2505.08672 CR - Delcker, J., Heil, J., Ifenthaler, D., Seufert, S., & Spirgi, L. (2024). First-year students AI competence as a predictor for intended and de facto use of AI-tools for supporting learning processes in higher education. International Journal of Educational Technology in Higher Education, 21(1), 18. https://doi.org/10.1186/s41239-024-00452-7 CR - Demir, B., & Beyazhançer, R. (2024). İlköğretim matematik öğretmeni adaylarının yapay zekâ öz-yeterliklerinin bazı değişkenler açısından incelenmesi [Investigation of artificial intelligence self-efficacy of prospective elementary mathematics teachers in terms of some variables]. International Journal of Social and Humanities Sciences Research (JSHSR), 11(113), 2393-2398. https://doi.org/10.5281/zenodo.14279357 CR - Deng, N., Liu, E. J., & Zhai, X. (2025). Understanding university students’ use of generative AI: The roles of demographics and personality traits. International Conference on Artificial Intelligence in Education, 281-293. https://doi.org/10.48550/arXiv.2505.02863 CR - Dereli, T. (2020). Yapay zekâ ve insanlık [Artificial ıntelligence and humanity]. In M. Şeker, Y. Bulduklu, C. Korkut & M. Doğrul (Eds.), Bilişim Teknolojileri ve İletişim: Birey ve Toplum Güvenliği [Information Technologies and Communication: Individual and Societal Security] (pp. 91-106). Türkiye Bilimleri Akademisi. CR - Deutskens, E., Ruyter, K. de, Wetzels, M., & Oosterveld, P. (2004). Response rate and response quality of internet-based surveys: An experimental study. Marketing Letters, 15(1), 21–36. https://doi.org/10.1023/B%3AMARK.0000021968.86465.00 CR - Dhurandhar, D., Dhamande, M., Bhadoria, P., Chandrakar, T., Agrawal, J., DHURANDAR, D., & Dhamande, M. M. (2025). Exploring medical artificial intelligence readiness among future physicians: Insights from a medical college in central India. Cureus, 17(1). https://doi.org/10.7759/cureus.76835 CR - Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., ... & Williams, M. D. (2021). Artificial Intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research, practice and policy. International Journal of Information Management, 57, 101994. https://doi.org/10.1016/j.ijinfomgt.2019.08.002 CR - Erdoğan, T. E., & Ekşioğlu, S. (2024). Yapay zekâ okuryazarlığı ölçeği’nin Türkçeye uyarlanması [Adaptation of Artificial Intelligence Literacy Scale into Turkish]. Türk Eğitim Bilimleri Dergisi, 22(2), 1196-1211. https://doi.org/10.37217/tebd.1496716 CR - Essien, A., Bukoye, O. T., O’Dea, X., & Kremantzis, M. (2024). The influence of AI text generators on critical thinking skills in UK business schools. Studies in Higher Education, 49(5), 865-882. https://doi.org/10.1080/03075079.2024.2316881 CR - Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American journal of theoretical and applied statistics, 5(1), 1-4. https://doi.org/10.11648/J.AJTAS.20160501.11 CR - Field, A. (2009). Discovering statistics using SPSS (3th ed.). SAGE Publications CR - Fihris, Alfianika, N., & Nasikhin, N. (2024). Differences in male and female responses to artificial ıntelligence ıntegration for education faculty: Study of thailand ınternational students at Islamic universities in Indonesia. eL-HIKMAH: Jurnal Kajian dan Penelitian Pendidikan Islam, 18(1), 31-60. https://doi.org/10.20414/elhikmah.v18i1.10037 CR - Folmeg, M., Fekete, I., & Koris, R. (2024). Towards identifying the components of students' AI literacy: An exploratory study based on higher education students' perceptions. Journal of University Teaching and Learning Practice, 21(6). https://doi.org/10.53761/wzyrwj33 CR - Fošner, A. (2024). University students’ attitudes and perceptions towards ai tools: implications for sustainable educational practices. Sustainability, 16(19), 8668. https://doi.org/10.3390/su16198668 CR - Furtun, S., & Öztürk, S. (2025). The use of generative artificial ıntelligence tools in Turkish education. In Ö. Tuğrul Kara & S. Furtun (Eds.), Turkish Education Studies (pp. 61-78). Akademisyen Kitabevi CR - Gasaymeh, A. M., Al-Tawel, A. M., Al-Moghrabi, K. G., & Al-Ghonmein, A. M. (2017). University students’ perceptions of the use of digital technologies in their formal learning: A developing country perspective. International Journal of Learning and Development, 7(3), 149–164. https://doi.org/10.5296/ijld.v7i3.11666 CR - GC, P. B. (2025). The use of artificial ıntelligence among university students: A narrative ınquiry. Academia Journal of Humanities & Social Sciences, 2, 49-61. https://doi.org/10.3126/ajhss.v2i1.77160 CR - Geerling, W., Mateer, G. D., Wooten, J., & Damodaran, N. (2023). ChatGPT has aced the test of understanding in college economics: Now what?. The American Economist, 68(2), 233-245. https://doi.org/10.1177/05694345231169654 CR - Ghosh, A., Chakraborty, D., & Law, A. (2018). Artificial intelligence in ınternet of things. CAAI Transactions on Intelligence Technology, 3(4), 208-218. https://doi.org/10.1049/trit.2018.1008 CR - Grassini, S. (2023). Development and validation of the AI attitude scale (AIAS-4): A brief 530 measure of general attitude toward artificial intelligence. Frontiers in Psychology, 14, 5311191628. https://doi.org/10.3389/fpsyg.2023.1191628 CR - Güler, A., & Polatgil, M. (2025). Bilişim Alanında Öğrenim Gören Öğrencilerin Yapay Zekâ Okuryazarlığı Düzeylerinin Ölçülmesi [Measuring Artificial Intelligence Literacy Levels of Students Studying in the Field of Informatics]. Journal of Computer and Education Research, 13(25), 30-53. https://doi.org/10.18009/jcer.1549267 CR - Güler, P., Gülşenoğlu, S., & Sayılır, M. (2025). Akademik yazmada kullanılabilecek yapay zekâ araçlarının sınıflandırılması [Classification of artificial ıntelligence tools that can be used in academic writing]. Eğitim Bilimleri Tematik Araştırmalar Dergisi, 1(2), 76-97. https://dergipark.org.tr/tr/pub/ebta/issue/92431/1667914 CR - Güler, Y., & Tuncel, F. (2022). Beden eğitimi ve spor öğretmen adaylarının 21. yüzyıl becerileri öz yeterlilik algıları [Perceptıons of physıcal educatıon and sports pre-service teachers’ self effıcıency on 21st century skılls]. SPORMETRE Beden Eğitimi ve Spor Bilimleri Dergisi, 20(1), 70-81. https://doi.org/10.33689/spormetre.981738 CR - Hajam, K. B., & Gahir, S. (2024). Unveiling the attitudes of university students toward artificial ıntelligence. Journal of Educational Technology Systems, 52(3), 335-345. https://doi.org/10.1177/00472395231225920 CR - Hamad, M., Qtaishat, F., Mhairat, E., Al-Qunbar, A., Jaradat, M., Mousa, A., Faidi, B., & Alkhaldi, S. (2024). Artificial intelligence readiness among Jordanian medical students: Using medical artificial intelligence readiness scale for medical students (MAIRS-MS). Journal of medical education and curricular development, 11, 23821205241281648. https://doi.org/10.1177/23821205241281648 CR - Hao, Z., Luo, H., Chen, Y., & Zhang, Y. (2025). Unpacking graduate students' learning experience with generative AI teaching assistant in a quantitative methodology course. arXiv preprint arXiv:2506.02966. https://doi.org/10.48550/arXiv.2506.02966 CR - Hirabayashi, S., Jain, R., Jurković, N., & Wu, G. (2024). Harvard undergraduate survey on generative AI. arXiv preprint arXiv:2406.00833. https://doi.org/10.48550/arXiv.2406.00833 CR - Hocaoğlu, A. Y. (2025). Özel eğitim öğretmenlerinin yapay zekâ farkındalık düzeylerinin incelenmesi [Investigation of artificial ıntelligence awareness levels of special education teachers]. Journal of Individual Differences in Education, 7(1), 1-16. https://doi.org/10.47156/jide.1638417 CR - Holmes, W., Bialik, M., & Fadel, C. (2019). Artificial intelligence in education: Promises and implications for teaching and learning. Center for Curriculum Redesign CR - Hwang, G. J., Xie, H., Wah, B. W., & Gasevic, D. (2020). Vision, challenges, roles, and research issues of artificial intelligence in education. Computers & Education: Artificial Intelligence, 1, 100001. https://doi.org/10.1016/j.caeai.2020.100001 CR - Işık A. (2006). Uygulamalı istatistik I [Applied statistics I]. Beta Basım Yayım Dağıtım AŞ., İstanbul. CR - İlhan, A. G., & Önal, N. (2025). Yapay zekâya yönelik tutum ölçeğinin Türkçeye uyarlanması: Geçerlik ve güvenirlik çalışması [Turkish adaptation of attitude towards artificial ıntelligence scale: A validity and reliability study]. Temel Eğitim, 7(25), 71-86. https://doi.org/10.52105/temelegitim.1606097 CR - Kandlhofer, M., Steinbauer, G., Hirschmugl-Gaisch, S., & Huber, P. (2016). Artificial intelligence and computer science in education: From kindergarten to university. In 2016 IEEE frontiers in education conference (FIE), 1-9. https://doi.org/10.1109/FIE.2016.7757570 CR - Kanont, K., Pingmuang, P., Simasathien, T., Wisnuwong, S., Wiwatsiripong, B., Poonpirome, K., Songkram, N., & Khlaisang, J. (2024). Generative-AI, a learning assistant? Factors ınfluencing higher-ed students’ technology acceptance. Electronic Journal of E Learning, 22(6), 18–33. https://doi.org/10.34190/ejel.22.6.3196 CR - Karaca, O., Çalışkan, S. A., & Demir, K. (2021). Medical artificial intelligence readiness scale for medical students (MAIRS-MS)–Development, validity and reliability study. BMC Medical Education, 21(1), 112. https://doi.org/10.1186/s12909-021-02546-6 CR - Karacan, S. B., & Çiçek, Ş. (2024). İlahiyat fakültesi öğrencilerinin yapay zekâ okuryazarlık düzeyleri ile yapay zekâ ya yönelik tutumları [Artificial ıntelligence literacy levels and attitudes towards artificial ıntelligence among theology faculty students]. Din Bilimleri Akademik Araştırma Dergisi, 24(3), 259-292. https://doi.org/10.33415/daad.1577561 CR - Karagöl, E., & Yıldırım Bilgen, D. (2025). Türkçe eğitiminde yapay zekâ kullanımı: Türkçe eğitimcileri yapay zekâ hakkında ne düşünüyor? [The use of artificial ıntelligence in Turkish language education: What do Turkish language educators think about AI?]. Ana Dili Eğitimi Dergisi, 13(2), 356-374. https://doi.org/10.16916/aded.1611540 CR - Karakaya, İ. (2014). Bilimsel araştırma yöntemleri [Scientific research methods]. In A. Tanrıöğen (Ed.), Bilimsel araştırma yöntemleri [Scientific research methods] (pp. 57-83). Anı Yayıncılık. CR - Kara, E. (2024). 21. Yüzyıl matematik eğitiminde yapay zekâ: Teknolojik dönüşümde global stratejiler [Artificial ıntelligence in 21st century mathematics education: Global strategies in technological transformation]. Çocuk ve Medeniyet Dergisi, 9(15), 8-43. https://doi.org/10.47646/CMD.2024.334 CR - Karasar, N. (2012). Bilimsel araştırma yöntemi (23. baskı). Nobel Yayınları. CR - Kaya, N., & İşci, E. (2025). Validity and reliability study of general attitude scale towards artificial intelligence in healthcare. Fenerbahçe University Journal of Health Sciences, 5(1), 52-63. https://dergipark.org.tr/en/pub/fbujohs/issue/91622/1531710 CR - Khan, K., Mehmood, S., & Irshadullah, H. M. (2025). Effects of artificial ıntelligence on the academic achievement of undergraduate students. Dialogue Social Science Review (DSSR), 3(5), 632-640. https://dialoguessr.com/index.php/2/article/view/579 CR - Krägeloh, C. U., Melekhov, V., Alyami, M. M., & Medvedev, O. N. (2025). Artificial intelligence attitudes ınventory (AIAI): Development and validation using Rasch methodology. Current Psychology, 1-13. https://doi.org/10.1007/s12144-025-08009-1 CR - Laupichler, M. C., Aster, A., Haverkamp, N., & Raupach, T. (2023). Development of the “Scale for the assessment of non-experts’ AI literacy”–An exploratory factor analysis. Computers in Human Behavior Reports, 12, 100338. https://doi.org/10.1016/j.chbr.2023.100338 CR - Li, H.H., Chen, B., Li, J.P., Liu, W., Ren, T.Y., Zheng, S.W., Xue, W.H., Liu, A., Luo, Z.M., Wen, J., & Jin, T. (2020). Status, problems and countermeasures of artificial intelligence application in medical education. Chinese Journal of Evidence-Based Medicine, 20, 1092–1097. https://www.researchgate.net/publication/348200167 CR - Lintner, T. (2024). A systematic review of AI literacy scales. npj Science of Learning, 9(50). https://doi.org/10.1038/s41539-024-00264-4 CR - Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence unleashed: An argument for AI in education. Pearson Education. https://static.googleusercontent.com/media/edu.google.com/en//pdfs/Intelligence-Unleashed-Publication.pdf CR - Mannuru, N. R., Shahriar, S., Teel, Z. A, Wang, T., Lund, B. D., Tijani, S., Pohboon, C. O., Agbaji, D., Alhassan, J., Galley, J., Kousari, R., Ogbadu-Oladapo, L., Saurav, S. K., Srivastava, A., Tummuru, S. P., Uppala, S., & Vaidya, P. (2023). Artificial intelligence in developing countries: The impact of generative artificial intelligence (AI) technologies for development. Information Development, 02666669231200628. https://doi.org/10.1177/02666669231200628 CR - Mansoor, H. M., Bawazir, A., Alsabri, M. A., Alharbi, A., & Okela, A. H. (2024). Artificial intelligence literacy among university students—A comparative transnational survey. Frontiers in Communication, 9, 1478476. https://doi.org/10.3389/fcomm.2024.1478476 CR - Manzo, A. N., & Burke, J. M. (2012). Increasing response rate in web-based/internet surveys. Handbook of survey methodology for the social sciences, 327–343. https://doi.org/10.1007/978-1-4614-3876-2_19 CR - Marx, J. P. S. (2023). ChatGPT im Studium: Die Top 10 Befehle für effektives Lernen. shribe. Abgerufen am, 7, 2023. https://shribe.de/chatgpt-studium CR - McGehee, N. (2024). AI in education: Student usage in online learning. Michigan Virtual Learning Research Institute. https://michiganvirtual.org/research/publications/ai-in-education-student-usage-in-online-learning CR - Meço, G., & Coştu, F. (2022). Eğitimde yapay zekânın kullanılması: Betimsel içerik analizi çalışması [Usıng artıfıcıal ıntellıgence ın educatıon: Descrıptıve content analysıs study]. Karadeniz Teknik Üniversitesi Sosyal Bilimler Enstitüsü Sosyal Bilimler Dergisi, 12(23), 171-193. https://dergipark.org.tr/tr/pub/sbed/issue/70445/1092727 CR - Møgelvang, A., Bjelland, C., Grassini, S., & Ludvigsen, K. (2024). Gender differences in the use of generative artificial intelligence chatbots in higher education: Characteristics and consequences. Education Sciences, 14(12), 1363. https://doi.org/10.3390/educsci14121363 CR - Møgelvang, A., & Grassini, S. (2024). University students’ attitude toward AI: A validation of the AI attitude scale (AIAS-4) in a large Norwegian student sample. OSF Preprint. https://www.researchgate.net/publication/386361043 CR - Møgelvang, A., & Grassini, S. (2025). Validating the AI attitude scale (AIAS-4) and exploring attitudinal differences in a large sample of Norwegian university students. Discover Education, 4(1), 1-15. https://doi.org/10.1007/s44217-025-00657-6 CR - Morales-García, W. C., Sairitupa-Sanchez, L. Z., Morales-García, S. B., & Morales-García, M. (2024). Development and validation of a scale for dependence on artificial intelligence in university students. In Frontiers in Education 9, 1323898. https://doi.org/10.3389/feduc.2024.1323898 CR - Möller, M., Nirmal, G., Fabietti, D., Stierstorfer, Q., Zakhvatkin, M., Sommerfeld, H., & Schütt, S. (2024). Revolutionising distance learning: A comparative study of learning progress with AI-driven tutoring. arXiv preprint arXiv:2403.14642. https://doi.org/10.48550/arXiv.2403.14642 CR - Muldoon, J., Cant, C., Wu, B., & Graham, M. (2024). A typology of artificial intelligence data work. Big Data & Society, 11(1), 20539517241232632. https://doi.org/10.1177/20539517241232632 CR - Nechyporenko, V., Hordiienko, N., Pozdniakova, O., Pozdniakova-Kyrbiatieva, E., & Siliavina, Y. (2025). How often do university students use artificial ıntelligence in their studies?. WSEAS Transactions on Information Science and Applications, 22, 203-214. https://doi.org/10.37394/23209.2025.22.18 CR - Nguyen, A., Kremantzis, M., Essien, A., Petrounias, I., & Hosseini, S. (2024). Enhancing student engagement through artificial intelligence (AI): Understanding the basics, opportunities, and challenges. Journal of University Teaching and Learning Practice, 21(6), 1-13. https://doi.org/10.53761/caraaq92 CR - Nurwahid, M., & Ashar, S. (2024). A literature review: The use of artificial ıntelligence (AI) in mathematics learning. In Proceeding International Conference on Religion, Science and Education 3, 337-344. https://sunankalijaga.org/prosiding/index.php/icrse/article/view/1254 CR - Öztemel, E. (2020). Yapay zekâ ve insanlığın geleceği [Artificial ıntelligence and the future of humanity]. In M. Şeker, Y. Bulduklu, C. Korkut & M. Doğrul (Eds.), Bilişim Teknolojileri ve İletişim: Birey ve Toplum Güvenliği [Information Technologies and Communication: Individual and Societal Security] (pp. 75-90). Türkiye Bilimleri Akademisi. CR - Patel, M. M., & Patel, P. M. (2020). A review of artificial ıntelligence applications in medical ımaging and diagnosis for medical tourism. In A. Kumar & S. Khatri (Eds.), Emerging Technologies for Promoting Food, Agriculture, and Health (pp. 305-326). CR - Polatgil, M., & Güler, A. (2023). Yapay zekâ okuryazarlığı ölçeğinin Türkçe’ye uyarlanması [Adaptation of artificial ıntelligence literacy scale into Turkish]. Sosyal Bilimlerde Nicel Araştırmalar Dergisi, 3(2), 99-114. https://sobinarder.com/index.php/sbd/article/view/65 CR - Polyportis, A. (2024). A longitudinal study on artificial intelligence adoption: understanding the drivers of ChatGPT usage behavior change in higher education. Frontiers in Artificial Intelligence, 6, 1324398. https://doi.org/10.3389/frai.2023.1324398 CR - Popenici, S. A., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(22), 1-13. https://doi.org/10.1186/s41039-017-0062-8 CR - Rajki, Z., Dringo-Horvath, I., & Nagy, J. T. (2025). Artificial ıntelligence in higher education: Students' artificial ıntelligence use and its influencing factors. Journal of University Teaching and Learning Practice, 22(2), 1-21. https://doi.org/10.53761/j0rebh67 CR - Rashid, M. B. M. A. (2021). Artificial intelligence effecting a paradigm shift in drug development. SLAS TECHNOLOGY: Translating Life Sciences Innovation, 26(1), 3-15. https://doi.org/10.1177/2472630320956931 CR - Rhema, A., & Miliszewska, I. (2014). Analysis of student attitudes towards e-learning: The case of engineering students in Libya. İnforming Science and İnformation Technology, 11, 169-190. https://doi.org/10.28945/1987 CR - Russell, S., & Norvig, P. (2021). Artificial ıntelligence: A modern approach (4th ed.). Pearson Education. CR - Saatçioğlu, Ö., & Topsakal, E. (2025). Öğretmen adaylarının yapay zekâya yönelik tutumlarının çeşitli değişkenler açısından incelenmesi [An ınvestıgatıon of preservıce teachers’ attıtudes toward artıfıcıal ıntellıgence ın terms of varıous varıables]. Uluslararası Toplumsal Bilimler Dergisi, 9(2), 168-191. https://dergipark.org.tr/tr/pub/toplumsalbilimler/issue/93778/1660930 CR - Savaş, B. Ç. (2024). Yapay zekâya bağımlılık ölçeğinin Türkçe’ye uyarlanması: Geçerlik ve güvenirlik çalışması [Adaptation of the dependence to artificial ıntelligence scale into Turkish: Validity and reliability study]. Herkes için Spor ve Rekreasyon Dergisi, 6(3), 306-315. https://doi.org/10.56639/jsar.1509301 CR - Sousa, A. E., & Cardoso, P. (2025). Use of generative AI by higher education students. Electronics, 14(7), 1258. https://doi.org/10.3390/electronics14071258 CR - Stöhr, C., Ou, A. W., & Malmström, H. (2024). Perceptions and usage of AI chatbots among students in higher education across genders, academic levels and fields of study. Computers and Education: Artificial Intelligence, 7, 100259. https://doi.org/10.1016/j.caeai.2024.100259 CR - Strzelecki, A., & ElArabawy, S. (2024). Investigation of the moderation effect of gender and study level on the acceptance and use of generative AI by higher education students: Comparative evidence from Poland and Egypt. British Journal of Educational Technology, 55(3), 1209-1230. https://doi.org/10.1111/bjet.13425 CR - Su, J., Ng, D. T. K., & Chu, S. K. W. (2023). Artificial intelligence (AI) literacy in early childhood education: The challenges and opportunities. Computers and Education: Artificial Intelligence, 4, 100124. https://doi.org/10.1016/j.caeai.2023.100124 CR - Sublime, J., & Renna, I. (2024). Is ChatGPT massively used by students nowadays? A survey on the use of large language models such as ChatGPT in educational settings. arXiv preprint arXiv:2412.17486. https://doi.org/10.48550/arXiv.2412.17486 CR - Turing, A. M. (2009). Parsing the turing test philosophical and methodological ıssues in the quest for the thinking computer. In R. Epstein, G. Roberts & G. Beber (Eds.), Computing machinery and intelligence (pp. 23-66). Springer Netherlands. CR - Ubaidillah, N. Z., Baharuddin, N. N., Kasil, N., & Ismail, F. (2020). Students’ perception of the use of technology in education. Environment-Behaviour Proceedings Journal, 5(15), 117–122. https://doi.org/10.21834/ebpj.v5i15.2374 CR - Uçar, S. (2023). Eğitim & Bilim [Education & Science]. In S. Karabatak & M. Karabatak (Eds.), Eğitimde yapay zekâ dönemi: Chatgpt kullanımın faydaları ve olası zorlukları [The era of artificial intelligence in education: Benefits and potential challenges of using ChatGPT] (pp. 7-16). Efe Akademi Yayınları. CR - Uyar, A. (2021). Meslek yüksekokulu öğrencilerinin dijital okuryazarlık düzeyleri [Digital literacy of associate degree students]. Uluslararası Güncel Eğitim Araştırmaları Dergisi, 7(1), 198-211. https://dergipark.org.tr/en/download/article-file/1497548 CR - Vázquez-Parra, J. C., Gonzalez-Gonzalez, C. S., Amézquita-Zamora, J. A., Cotino Arbelo, A. E., Palomino-Gámez, S., & Cruz-Sandoval, M. (2024). Complex thinking and adopting artificial intelligence tools: A study of university students. Frontiers in Education, 9, 1377553. https://doi.org/10.3389/feduc.2024.1377553 CR - Vieriu, A. M., & Petrea, G. (2025). The impact of artificial intelligence (AI) on students’ academic development. Education Sciences, 15(3), 343. https://doi.org/10.3390/educsci15030343 CR - Yahiaoui, Z. (2024). Artificial ıntelligence and educational performance: A study at the university of algiers 2. Aleph Langues Medias & Societes, 11(4), 589-605. https://aleph.edinum.org/13473 CR - Yalman, F. (2023). Sağlık turizminde yapay zekâ uygulamaları ölçeği: Türkçe geçerlilik ve güvenilirlik çalışması [Scale of artificial ıntelligence applications in health tourism: A study of Turkish validity and reliability study]. Türk Turizm Araştırmaları Dergisi, 7(3), 521-534. https://doi.org/10.26677/TR1010.2023.1290 CR - Yang, W. (2022). Artificial Intelligence education for young children: Why, what, and how in curriculum design and implementation. Computers and Education: Artificial Intelligence, 3, 100061. https://doi.org/10.1016/j.caeai.2022.100061 CR - Yıldırım, Ö. K., & Yemenici, A. İ. (2020). Türkçe öğretmen adaylarının bilgi okuryazarlık düzeyinin belirlenmesi (Afyonkarahisar örneği) [Determination of ınformation literacy levels of Turkish teacher candidates (The case of Afyonkarahisar)]. Türk Çalışmaları, 15 (3), 2303-2316. https://d1wqtxts1xzle7.cloudfront.net/63812758/Turkce_Ogretmeni_Adaylarinin_Bilgi_Okuryazarlik_Duzeylerinin_Belirlenmesi20200702-21920-1x7aln5-libre.pdf? CR - Yılmaz, Y., Yılmaz, D. U., Yıldırım, D., Korhan, E. A., & Kaya, D. Ö. (2021). Yapay zekâ ve sağlıkta yapay zekanın kullanımına yönelik sağlık bilimleri fakültesi öğrencilerinin görüşleri [Artificial intelligence and the use of artificial intelligence in health: Opinions of health sciences students]. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 12(3), 297- 308. https://doi.org/10.22312/sdusbed.950372 CR - Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – Where are the educators?. International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0 CR - Zhou, X., Zhang, J., & Chan, C. (2024). Unveiling students' experiences and perceptions of artificial intelligence usage in higher education. Journal of University Teaching and Learning Practice, 21(6), 126-145. https://doi.org/10.53761/xzjprb23 CR - Wang, B., Rau, P. L. P., & Yuan, T. (2023). Measuring user competence in using artificial intelligence: validity and reliability of artificial intelligence literacy scale. Behaviour & information technology, 42(9), 1324-1337. https://doi.org/10.1080/0144929X.2022.2072768 CR - Wang, F., King, R. B., Chai, C. S., & Zhou, Y. (2023). University students’ intentions to learn artificial intelligence: the roles of supportive environments and expectancy–value beliefs. International Journal of Educational Technology in Higher Education, 20(51). https://doi.org/10.1186/s41239-023-00417-2 CR - Wecks, J. O., Voshaar, J., Plate, B. J., & Zimmermann, J. (2024). Generative AI Usage and Exam Performance. arXiv preprint arXiv:2404.19699. https://doi.org/10.48550/arXiv.2404.19699 CR - Qu, Y., Tan, M. X. Y., & Wang, J. (2024). Disciplinary differences in undergraduate students' engagement with generative artificial intelligence. Smart Learning Environments, 11(1), 51. https://doi.org/10.1186/s40561-024-00341-6 UR - https://dergipark.org.tr/tr/pub/neueefd/issue//1770325 L1 - https://dergipark.org.tr/tr/download/article-file/5178029 ER -