TY - JOUR T1 - Çapraz akışa daldırılmış çoklu sentetik jetlerin ısı transferine etkisinin deneysel incelenmesi TT - Experimental investigation of the effect of submerged multiple synthetic jets on heat transfer in cross-flow AU - Akdağ, Ünal AU - Akcay, Selma AU - Güngör, Bekir AU - Palancioğlu, Hakan PY - 2025 DA - August Y2 - 2024 JF - Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi PB - Pamukkale Üniversitesi WT - DergiPark SN - 2147-5881 SP - 546 EP - 556 VL - 31 IS - 4 LA - tr AB - Bu çalışmada, alt yüzeyi ısıtılmış kare kesitli bir kanal içerisindeki zorlanmış çapraz akışa daldırılmış çoklu sentetik jet (sıfır kütle akılı) çarpmasının ısı transferine etkisi deneysel olarak araştırılmıştır. Cebri kanal akışında, ana akışa çapraz olarak yerleştirilen altı adet sentetik jetin farklı Reynolds sayılarında (6000 ≤ Re ≤ 40000) dört farklı boyutsuz genlik (Ao: 0.22, 0.44, 0.66 ve 0.88) ve altı farklı boyutsuz frekans (Wo: 11, 16, 19, 22, 25 ve 27) için ısı transferine etkisi deneysel olarak incelenmiştir. Bakır borulardan yapılmış nozullar, ana akış içerisine dikey olarak daldırılmış ve nozulların alt ucu hedef yüzeye 2 cm mesafede yerleştirilmiş olup, ana akışın türbülanslı rejiminde ısı transferine etkileri analiz edilmiştir. Kanal giriş ve çıkışlarına ve hedef yüzey üzerine yerleştirilmiş ısıl çiftler aracılığı ile sıcaklık ölçümleri yapılmıştır. Elde edilen sıcaklıklar yardımıyla Nusselt sayıları (Nu) hesaplanmıştır. Ayrıca kanal giriş ve çıkışı arasındaki basınç kaybı tespit edilerek termo-hidrolik performans (THP) değerleri hesaplanmıştır. Elde edilen sonuçlar, Re=6000’de, artan genlik ve frekansla hedef yüzey sıcaklığının kayda değer şekilde düştüğünü ve artan Reynolds sayılarında genlik ve frekansın yüzey sıcaklıkları üzerindeki etkilerinin azaldığını göstermiştir. Re=6000, Wo=27 ve Ao=0.88 için daimî akışa göre 2.74 kat ısı transferinin iyileştiği tespit edilmiştir. Çalışılan tüm Reynolds sayıları için artan genlik ve frekansla THP değerlerinin arttığı gözlenmiştir. Sabit bir jet parametresi için (Ao=0.88 ve Wo=27) en yüksek THP, Re=6000’de 2.6 olarak tespit edilmiştir. KW - Çoklu sentetik jet KW - Cebri taşınım KW - Kanal akışı KW - Isı transferi iyileştirme N2 - In this study, the effect of multiple synthetic jet (zero mass flux) impingement on heat transfer, immersed in forced crossflow in a square-section channel with a heated bottom surface, was experimentally investigated. In the forced channel flow, effects on heat transfer six synthetic jets placed diagonally in the main flow have four different dimensionless amplitudes (Ao: 0.22, 0.44, 0.66 and 0.88) and six different dimensionless frequencies (Wo: 11, 16, 19, 22, 25, and 27) at different Reynolds numbers (6000 ≤ Re ≤ 40000) were examined experimentally. Nozzles made of copper pipes were immersed vertically into the main flow and the lower end of the jets was placed 2 cm from the target surface, and their effects on heat transfer in the turbulent regime of the main flow were analyzed. Temperature measurements were made using thermocouples placed at the channel entrances, exits, and on the target surface. Nusselt numbers (Nu) were calculated with the help of the obtained temperatures. In addition, the pressure loss between the channel inlet and outlet was determined and thermo-hydraulic performance (THP) values were calculated. The results showed that at Re = 6000, the target surface temperature decreased significantly with increasing amplitude and frequency, and the effects of amplitude and frequency on surface temperatures decreased at increasing Reynolds numbers. It was determined that for Re = 6000, Wo = 27, and Ao = 0.88, heat transfer was improved by 2.74 times compared to steady flow. It was observed that THP values increased with increasing amplitude and frequency for all Reynolds numbers tested. For a constant jet parameter (Ao = 0.88 and Wo = 27), the highest THP was determined as 2.6 at Re = 6000. CR - [1] Weigand B, Spring S. “Multiple jet impingement−A review”. Proceedings of International Symposium on Heat Transfer in Gas Turbine Systems, TURBINE-09. Begel House Inc. Antalya, Türkiye, 9-14 August 2009. CR - [2] Karabulut K, Alnak DE. “Investigation of air jet impingement drying with forced convection of moist things”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(4) 387-395, 2019 CR - [3] Krishan G, Aw KC, Sharma RN. “Synthetic jet impingement heat transfer enhancement-a review”. Applied Thermal Engineering, 149, 1305-1323, 2019. CR - [4] Barbosa FV, Teixeira SF, Teixeira JC. “Convection from multiple air jet impingement-A review”. Applied Thermal Engineering, 218, 119307, 2022. CR - [5] Kumar R, Nadda R, Kumar S, Saboor S, Saleel CA, Abbas M, Linul E. “Convective heat transfer enhancement using impingement jets in channels and tubes: A comprehensive review”. Alexandria Engineering Journal, 70, 349-376. 2023. CR - [6] Öztürk M, Demircan T. “Elektronik bir elemanın çarpan jet ve çapraz akış kombinasyonu ile soğutulmasında, kanatçık açısının akış ve ısı transferi karakteristikleri üzerindeki etkilerinin sayısal olarak incelenmesi”. Gazi Üniversitesi Mimarlık ve Mühendislik Fakültesi Dergisi, 37(1), 57-74, 2022. CR - [7] Rundstrom D, Moshfegh B. “Investigation of flow and heat transfer of an impinging jet in a cross-flow for cooling of a heated cube”. Journal of Electronic Packaging, 2, 150-157, 2006. CR - [8] Yan X, Saniei N. “Heat transfer from an obliquely impinging circular, air jet to a flat plate”. International Journal Heat and Fluid Flow, 18, 591-599, 1997. CR - [9] San JY, Chen JJ. “Effects of jet-to-jet spacing and jet height on heat transfer characteristics of an impinging jet array”. International Journal of Heat and Mass Transfer, 71, 8-17, 2014. CR - [10] Larraona GS, Rivas A, Antón R, Ramos JC, Pastor I, Moshfegh B. “Computational parametric study of an impinging jet in a cross-flow configuration for electronics cooling applications”. Applied Thermal Engineering, 52(2), 428-438, 2013. CR - [11] Tepe AÜ, Yetişken Y, Uysal Ü, Arslan K. “Experimental and numerical investigation of jet impingement cooling using extended jet holes”. International Journal of Heat and Mass Transfer, 158, 119945, 2020. CR - [12] Koc I, İslamoğlu Y, Akdağ Ü. “Investigation of film cooling effectiveness and heat transfer coefficient for rectangular holes with two rows”. Aircraft Engineering and Aerospace Technology, 81(2), 106-117, 2009. CR - [13] Bu X, Peng L, Lin G, Bai L, Wen D. “Experimental study of jet impingement heat transfer on a variable-curvature concave surface in a wing leading edge”. International Journal of Heat and Mass Transfer, 90, 92-101, 2015. CR - [14] Ichikawa Y, Motosuke M, Kameya Y, Yamamoto M, Honami S. “Three-dimensional flow characterization of a square array of multiple circular impinging jets using stereoscopic PIV and heat transfer relation”. Journal of Visualization, 19, 89-101, 2016. CR - [15] Wae-hayee M, Tekasakul P, Eiamsa-ard S, Nuntadusit C. “Effect of cross-flow velocity on flow and heat transfer characteristics of impinging jet with low jet-to-plate distance”. Journal of Mechanical Science and Technology, 28, 2909-2917, 2014. CR - [16] Lee J. Ren Z, Ligrani P, Lee DH, Fox MD, Moon HK. “Cross-flow effects on impingement array heat transfer with varying jet-to-target plate distance and hole spacing”. International Journal of Heat and Mass Transfer, 75, 534-544, 2014. CR - [17] Otero-Pérez JJ, Sandberg RD, Mizukami S, Tanimoto K. “High-fidelity simulations of multi-jet impingement cooling flows”. Journal of Turbomachinery, 143(8) 081011, 2021. CR - [18] Eren M, Caliskan S. “Effect of grooved pin-fins in a rectangular channel on heat transfer augmentation and friction factor using Taguchi method”. International Journal of Heat and Mass Transfer, 102, 1108-1122, 2016. CR - [19] Tepe AÜ. “Numerical investigation of a novel jet hole design for staggered array jet impingement cooling on a semicircular concave surface”. International Journal of Thermal Sciences, 162, 106792, 2021. CR - [20] Caliskan S, Şevik S, Özdilli Ö. “Heat transfer enhancement by a sinusoidal wavy plate having punched triangular vortex generators”. International Journal of Thermal Sciences, 181, 107769, 2022. CR - [21] Akcay S, Akdag U. “Parametric investigation of effect on heat transfer of pulsating flow of nanofluids in a tube using circular rings”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 24(4) 597-604, 2018. CR - [22] Akdag U, Cetin O, Demiral D, Ozkul I. “Experimental investigation of convective heat transfer on a flat plate subjected to a transversely synthetic jet”. International Communications in Heat and Mass Transfer, 49, 96-103, 2013. CR - [23] Glezer A., Amitay M, Honohan AM. “Aspects of low-and high-frequency actuation for aerodynamic flow control”. AIAA Journal, 43 (7), 1501-1511, 2005. CR - [24] Rice TT, Taylor K, Amitay M. “Pulse modulation of synthetic jet actuators for control of separation”. Physical Review Fluids, 6(9), 093902, 2021. CR - [25] Ja’fari M, Jaworski AJ, Rona A. “Numerical study of flow separation control over a circular hump using synthetic jet actuators”. AIP Advances, 12(9), 095205, 2022. CR - [26] Itsariyapinyo P, Sharma RN. “Large Eddy simulation of a NACA0015 circulation control airfoil using synthetic jets”. Aerospace Science and Technology, 82, 545-556, 2018. CR - [27] Zargar OA, Lin T, Zebua AG, Lai TJ, Shih YC, Hu SC, Leggett, G. “The effects of surface modification on aerodynamic characteristics of airfoil DU 06 W 200 at low Reynolds numbers”. International Journal of Thermofluids, 16, 100208, 2022. CR - [28] Pavlova A, Amitay M. “Electronic cooling with synthetic jet impingement”, Journal of Heat Transfer, 128, 897-907, 2006. CR - [29] Mahek MK, Alkhedher M, Ghazal M, Abdelkareem MA, Ramadan M, Olabi AG. “Effects of control volume outlet variation on axial air cooling of lithium-ion batteries”. International Journal of Thermofluids, 19, 100373, 2023. CR - [30] Xu Y, Li ZY, Wang JJ, Yang LJ. “On the interaction between turbulent vortex rings of a synthetic jet and porous walls”. Physics of Fluids, 31(10), 105112, 2019. CR - [31] Greco CS, Paolillo G, Ianiro A, Cardone G, Luca L. “Effects of the stroke length and nozzle-to-plate distance on synthetic jet impingement heat transfer”. International Journal of Heat and Mass Transfer, 117, 1019-1031, 2018. CR - [32] Gil P, Wilk J. “Heat transfer coefficients during the impingement cooling with the use of synthetic jet”. International Journal of Thermal Sciences, 147, 106132, 2020. CR - [33] Wang L, Feng L, Xu Y, Xu Y, Wanget J. “Experimental investigation on flow characteristics and unsteady heat transfer of noncircular impinging synthetic jets”. International Journal of Heat and Mass Transfer, 190, 122760, 2022. CR - [34] Feero MA, Lavoie P, Sullivan P.E. “Influence of cavity shape on synthetic jet performance”. Sensors and Actuators A: Physical, 223, 1-10, 2015. CR - [35] Wang L, Feng LH, Wang JJ, Li T. “Parameter influence on the evolution of low-aspect-ratio rectangular synthetic jets”. Journal of Visualization, 21, 105-115, 2018. CR - [36] Jankee GK, Ganapathisubramani B, “Influence of internal orifice geometry on synthetic jet performance”. Experiments in Fluids, 60, 1-11, 2019. CR - [37] Lyu Y, Zhao Y, Zhang J, Zhang J, Shan Y. “Large eddy simulation of temperature-variation effect of impinging planar lobed synthetic jet on flat plate and the semi-cylindrical concave plate”. International Journal of Thermal Sciences,184, 107981, 2023. CR - [38] Chaudhari M, Puranik B, Agrawal A. “Multiple orifice synthetic jet for improvement in impingement heat transfer”. International Journal of Heat and Mass Transfer, 54 (9-10), 2056-2065, 2011. CR - [39] Mangate L, Yadav H, Agrawal A, Chaudhari M. “Experimental investigation on thermal and flow characteristics of synthetic jet with multiple orifice of different shapes”. International Journal of Thermal Sciences, 140, 344-357, 2019. CR - [40] Krishan G, Aw KC, Sharma RN. “Synthetic jet impingement heat transfer enhancement-A review”. Applied Thermal Engineering, 149, 1305-1323, 2019. CR - [41] Tan XM, Zhang JZ. “Flow and heat transfer characteristics under synthetic jets impingement driven by piezoelectric actuator”, Experimental Thermal and Fluid Science, 48, 134-146, 2013. CR - [42] Arshad A, Jabbal M, Yan Y. “Synthetic jet actuators for heat transfer enhancement-A critical review”. International Journal of Heat and Mass Transfer, 146, 118815, 2020. CR - [43] Singh PK, Sahu SK, Upadhyay PK. “Experimental investigation of the thermal behavior a single-cavity and multiple-orifice synthetic jet impingement driven by electromagnetic for electronics cooling”. Experimental Heat Transfer, 35 (2), 132-158, 2022. CR - [44] Gungordu B, Jabbal M, Popov AA. “Enhancing jet velocity and power conversion efficiency of piezoelectric synthetic jet actuators”. AIAA Journal, 61(10), 4321-4331, 2023. CR - [45] Gao S, Zhang J, Tan X. “Experimental study on heat transfer characteristics of synthetic jet driven by piston actuator”. Science China Technological Sciences, 55, 1732-1738, 2012. CR - [46] Lyu Y, Zhang J, Tang C, Tan X. “Temperature-variation effect of piston-driven synthetic jet and its influence on definition of heat transfer coefficient”. International Journal of Heat and Mass Transfer, 152, 119347, 2020. CR - [47] Jacob A, Shafi KA, Roy KER. “Heat transfer characteristics of piston-driven synthetic jet”. International Journal of Thermofluids, 11, 100104, 2021. CR - [48] Singh PK, Sahu SK, Upadhyay PK. “Experimental investigation of the thermal behavior a single-cavity and multiple orifice synthetic jet impingement driven by electromagnetic actuator for electronics cooling”. Experimental Heat Transfer, 35 (2), 132-158, 2020. CR - [49] Gil P. “Flow and heat transfer characteristics of single and multiple synthetic jets impingement cooling”. International Journal of Heat and Mass Transfer, 2, 123590, 2023. CR - [50] Ja’fari M, Shojae FJ, Jaworski AJ. “Synthetic jet actuators: Overview and applications”. International Journal of Thermofluids, 20, 100438, 2023. CR - [51] Kang Y, Luo Z, Deng X, Cheng P, Peng C, He W, Xia Z. “Numerical study of a liquid cooling device based on dual synthetic jets actuator”. Applied Thermal Engineering, 219(Part D), 119691, 2023. CR - [52] Kang Y, Xia Z, Luo Z, Deng X, Zhu Y, Peng C. “Experimental study on a dual synthetic jets liquid cooling device”. Applied Energy, 372, 123865, 2024. CR - [53] Akdag U, Akcay S, Un N, Danismaz M. “Experimental investigation of the heat transfer characteristics of a synthetic annular jet impingement on a flat surface”. Experimental Heat Transfer, 38(5), 465-484, 2025. CR - [54] Caliskan S. “Experimental investigation of heat transfer in a channel with new winglet-type vortex generators”. Intenational Journal of Heat and Mass Transfer, 78, 604-614, 2014. CR - [55] Bergman TL, Lavine AS, Incropera FP, DeWitt, D. Fundamentals of Heat and Mass Transfer. New York, USA, John Wiley & Sons, 2011. CR - [56] Akdag U, Yukselturk M, Palancioglu H, Caliskan S. “Heat transfer enhancement in a square channel with a set of triangular prisms: an experimental study”. Experimental Heat Transfer, 37(4), 389-403, 2024. CR - [57] Holman JP. Experimental Methods for Engineers. 7th ed. New York, USA, McGraw-Hill, 2001. CR - [58] Akdag U, Akcay S, Kilic M, Gungor B. “Flow and heat transfer analysis of submerged multiple synthetic jet impingement in a square channel with forced-flow”. International Communications in Heat and Mass Transfer, 159, 108103, 2024. UR - https://dergipark.org.tr/tr/pub/pajes/issue//1771761 L1 - https://dergipark.org.tr/tr/download/article-file/5184674 ER -