TY - JOUR T1 - THERMOPHYSIOLOGICAL INSIGHTS INTO MADALINE®-BASED MULTILAYER TEXTILES FOR MEDICAL PROTECTION TT - TIBBİ KORUYUCU GİYSİLERDE KULLANILAN MADALINE® TABANLI ÇOK KATMANLI TEKSTİLLERİN TERMOFİZYOLOJİK ANALİZİ AU - Altay, Pelin PY - 2025 DA - September Y2 - 2025 DO - 10.21605/cukurovaumfd.1777344 JF - Çukurova Üniversitesi Mühendislik Fakültesi Dergisi PB - Çukurova Üniversitesi WT - DergiPark SN - 2757-9255 SP - 743 EP - 754 VL - 40 IS - 3 LA - en AB - Healthcare workers often face thermal discomfort when using multilayer protective clothing, as protective barrier performance is usually prioritized over comfort. This study evaluated the thermophysiological performance of a Madaline®-based multilayer textile system developed for medical applications. The system included an outer Madaline® protective layer, two polyurethane membranes (Membrane A: 145 g/m²; Membrane B: 859 g/m²), and a quilted Nomex® Comfort liner. Thermal properties were measured according to ISO 11092, and water vapour permeability and resistance (RET) were assessed. Results showed that adding membranes increased thermal resistance compared to the outer layer alone, with Membrane B providing slightly higher conductivity and resistance than Membrane A. The addition of the quilted liner further improved insulation (up to 65.43 mK·m²/W) but reduced vapour permeability (≈21–23%) and increased RET values (14.2–15.8 Pa·m²/W), classifying both three-layer systems in the moderate comfort category. The Membrane B + liner configuration is most appropriate for high-risk environments requiring maximum insulation and barrier protection, while the Membrane A + liner system offers a more favorable balance of comfort and protection for moderate-risk or extended-wear conditions. KW - Madaline® fabric KW - multilayer textiles KW - medical protective clothing KW - thermophysiological comfort KW - water vapour resistance (RET) N2 - Sağlık çalışanları, çok katmanlı koruyucu giysiler kullanırken genellikle termal rahatsızlık yaşamaktadır, çünkü bu tür giysilerde konfor yerine bariyer performansı ön planda tutulmaktadır. Bu çalışmada, tıbbi uygulamalar için geliştirilen Madaline® esaslı çok katmanlı bir tekstil sisteminin termofizyolojik performansı değerlendirilmiştir. Sistem; dışta koruyucu Madaline® tabakası, iki farklı poliüretan membran (Membran A: 145 g/m²; Membran B: 859 g/m²) ve içte kapitone Nomex® Comfort astarından oluşmaktadır. Termal özellikler ISO 11092 standardına göre ölçülmüş, su buharı geçirgenliği ve direnç (RET) değerleri belirlenmiştir. Sonuçlar, membranların eklenmesiyle tek dış tabakaya kıyasla termal direncin arttığını, Membran B’nin Membran A’ya göre daha yüksek iletkenlik ve direnç sağladığını göstermiştir. Kapitone astarın eklenmesi yalıtımı önemli ölçüde artırmış (65.43 mK·m²/W’ye kadar) ancak su buharı geçirgenliğini azaltmış (≈%21–23) ve RET değerlerini yükseltmiştir (14.2–15.8 Pa·m²/W). Bu değerler, her iki üç katmanlı sistemi de orta düzey konfor kategorisine yerleştirmektedir. Yüksek riskli ortamlarda maksimum bariyer koruması ve yalıtım için Membran B + astar kombinasyonu en uygun çözüm olurken, Membran A + astar sistemi ise konfor ve koruma dengesini daha iyi sağlayarak orta riskli veya uzun süreli kullanım için daha uygundur. CR - 1. Derks, M.T.H., Mishra, A.K., Loomans, M.G.L.C. & Kort, H.S.M. (2018). Understanding thermal comfort perception of nurses in a hospital ward work environment. Building and Environment, 140, 119-127. CR - 2. Zhao, Y., Su, M., Meng, X., Liu, J. & Wang, F. (2023). Thermophysiological and perceptual responses of amateur healthcare workers: Impacts of ambient condition, inner-garment insulation and personal cooling strategy. International Journal of Environmental Research and Public Health, 20, 612. CR - 3. Wibowo, R., Satow, M., Quartucci, C., Weinmann, T., Koller, D., Daanen, H.A.M., Nowak, D., Bose-O’Reilly, S. & Rakete, S. (2025). Impact of heat stress and protective clothing on healthcare workers: Health, performance, and well-being in hospital settings. Annals of Work Exposures and Health, 69(6), 665-675. CR - 4. Eryürük, S.H. (2019). Effect of fabric layers on thermal comfort properties of multilayered thermal protective fabrics. Autex Research Journal, 19(3), 271-278. CR - 5. Bröde, P., Fiala, D., Błażejczyk, K., Holmer, I., Jendritzky, G., Kampmann, B., Tinz, B. & Havenith, G. (2012). Deriving the operational procedure for the Universal Thermal Climate Index (UTCI). International Journal of Biometeorology, 56, 481-494. CR - 6. McLellan, T.M. & Daanen, H.A.M. (2012). Heat strain in personal protective clothing: Challenges and intervention strategies. In: Kiekens, P., Jayaraman, S. (eds) Intelligent Textiles and Clothing for Ballistic and NBC Protection. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. CR - 7. Sarker, M.E. & Mezarcıöz, S. (2023). The effects of several washings on some of the comfort features of denim fabrics made of cotton and coolmax weft yarns with and without elastane. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 38(4), 1151-1159. CR - 8. Şenkal Sezer, F. (2016). Sağlık ocaklarında konfor koşullarının değerlendirilmesi: Bursa/Nilüfer örneği. Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 30(1), 197-208. CR - 9. Lou, L., Chen, K. & Fan, J. (2021). Advanced materials for personal thermal and moisture management of healthcare workers wearing PPE. Materials Science and Engineering: R: Reports, 146, 100639. CR - 10. Konečná, K. & Adamovský, D. (2025). Investigation of cleanroom clothing thermal insulation by thermal manikin and impact on thermal comfort of cleanroom users. Journal of Industrial Textiles, 55, 1–19. CR - 11. Roskotová, K. & Adamovský, D. (2021). Thermal insulation of clothing: Assessment of cleanroom clothing ensembles. In: Healthy Buildings 2021 – Europe Proceedings, 308-314. CR - 12. Eryürük, S.H. (2021). Analyzing thermophysiological comfort and moisture management behavior of cotton denim fabrics. Autex Research Journal, 21(2), 248-254. CR - 13. McCullough, E.A. (2005). The use of thermal manikins to evaluate clothing and environmental factors. In: Tochihara, Y., Ohnaka, T. (eds) Environmental Ergonomics. Elsevier Ergonomics Book Series, 3, 403-407. CR - 14. Wang, F., Guo, W., Tian, Y., Liu, X., Pang, D., Lian, Z., Deng, C., Li, J. & Zhang, J. (2025). Thermal comfort of medical protective clothing under high temperature and high humidity. Building and Environment, 270, 112570. CR - 15. Abreu, M.J., Abreu, I. & Ribeiro, P. (2014). Thermo-physiological behavior of single use scrub suits using a thermal manikin. 2nd International Congress on Healthcare and Medical Textiles, September 25-26, Izmir, Turkey. CR - 16. Khodakarami, J. & Knight, I. (2008). Required and current thermal conditions for occupants in Iranian hospitals. HVAC&R Research, 14(2), 175-193. CR - 17. Tian, M., Qi, N., Jiang, Q., Su, Y. & Li, J. (2024). Addressing localized thermal comfort needs of the human body through advanced personal thermal management garments: Design and evaluation. Textile Research Journal, 95(3-4), 429-449. CR - 18. Abuhay, A., Tadesse, M.G., Berhanu, B., Malengier, B. & Van Langenhove, L. (2025). Advancements in clothing thermal comfort for cold intolerance. Fibers, 13(2), 13. CR - 19. Orjuela-Garzón, I.C., Rodríguez, C.F., Cruz, J.C. & Briceño, J.C. (2024). High-thermal comfort wearables for sports: Design, materials, and performance. ACS Omega, 9(50), 49143-49162. CR - 20. Li, J., Cui, X., Huang, Q. & Li, J. (2024). Determining safe working hours of wearing medical disposable protective clothing from physiological thermal limits: A pilot study. AATCC Journal of Research, 11(3), 171-182. CR - 21. Mao, Y., Zhu, Y., Guo, Z., Zheng, Z., Fang, Z. & Chen, X. (2022). Experimental investigation of the effects of personal protective equipment on thermal comfort in hot environments. Building and Environment, 222, 109352. CR - 22. Jiang, H., Cao, B. & Zhu, Y. (2023). Improving thermal comfort of individual wearing medical protective clothing: Two personal cooling strategies integrated with the polymer water-absorbing resin material. Building and Environment, 243, 110730. CR - 23. Lei, L., Shi, S., Wang, D., Meng, S., Dai, J. G., Fu, S. & Hu, J. (2023). Recent advances in thermoregulatory clothing: Materials, mechanisms, and perspectives. ACS Nano, 17(3), 1803-1830. CR - 24. Tang, K.H.D. (2025). Advances in thermoregulating textiles: Materials, mechanisms, and applications. Textiles, 5(2), 22. CR - 25. Zhang, Q., Cheng, H., Zhang, S., Li, Y., Li, Z., Ma, J. & Liu, X. (2024). Advancements and challenges in thermoregulating textiles: Smart clothing for enhanced personal thermal management. Chemical Engineering Journal, 488, 151040. CR - 26. Peng, Y., Li, W., Liu, B., Jin, W., Schaadt, J., Tang, J., Zhou, G., Wang, G., Zhou, J., Zhang, C., Zhu, Y., Huang, W., Wu, T., Goodson, K.E., Dames, C., Prasher, R., Fan, S. & Cui, Y. (2021). Integrated cooling (i-Cool) textile of heat conduction and sweat transportation for personal perspiration management. Nature Communications, 12, 6122. CR - 27. Chai, J., Kang, Z., Yan, Y., Lou, L., Zhou, Y. & Fan, J. (2022). Thermoregulatory clothing with temperature-adaptive multimodal body heat regulation. Cell Reports Physical Science, 3(7), 100958. CR - 28. Zhou, Y., Lou, L. & Fan, J. (2023). Quantitative comparison of personal cooling garments in performance and design: A review. Processes, 11, 2976. CR - 29. Cao, W., Zhang, X., Yao, W., Ruan, M., Zhang, Q., Cao, Z. & Shi, F. (2024). Experimental study on the cooling performance of medical protective clothing coupled with phase-change cold storage materials. Applied Thermal Engineering, 243, 122607. CR - 30. Udom, S.U. (2019). Exploring thermal comfort band for healthcare workers in remote clinics in hot and arid climates: An approach for building performance improvement. In: Proceedings of the 16th IBPSA Conference, Rome, Italy, Sept. 2-4, 2019. CR - 31. Khodakarami, J., Knight, I. (2007). Measured thermal comfort conditions in Iranian hospitals for patients and staff. In: Proceedings of Clima 2007 WellBeing Indoors Conference. CR - 32. Ochoa, N., Giraldo, S.M., Angel, B.E. & Escobar, N.J. (2013). Development of a method for measuring thermal comfort in medical clothing through the hot plate apparatus. In: 2013 Pan American Health Care Exchanges (PAHCE), Medellin, Colombia, 1-6. CR - 33. Kim, J.-H., Powell, J.B., Roberge, R.J., Shepherd, A. & Coca, A. (2014). Evaluation of protective ensemble thermal characteristics through sweating hot plate, sweating thermal manikin, and human tests. Journal of Occupational and Environmental Hygiene, 11(4), 259-267. CR - 34. ISO 11092:2014. Textiles - Physiological effects - Measurement of thermal and water-vapour resistance under steady-state conditions (sweating guarded-hotplate test). International Organization for Standardization. CR - 35. Romeli, D., Barigozzi, G., Esposito, S., Rosace, G. & Salesi, G. (2013). High sensitivity measurements of thermal properties of textile fabrics. Polymer Testing, 32(6), 1029-1036. CR - 36. Li, R., Dolez, P.I., Lai, A., Gholamreza, F., Allen, S., Gathercole, R. & Li, R. (2025). Heat transfer through wavy clothing layers with varied permeability. Building and Environment, 280, 113114. CR - 37. Firšt Rogale, S., Rogale, D., Knezić, Ž., Jukl, N. (2021). Measurement method for the simultaneous determination of thermal resistance and temperature gradients in the determination of thermal properties of textile material layers. Materials (Basel), 14(22), 6853. CR - 38. Rui, K., He, J., Xin, M., Chen, Z. & Guan, J. (2024). Effects of air gap and compression on the dual performance of multilayer thermal protective clothing under low radiant heat. Journal of Industrial Textiles, 54. CR - 39. Mortazavinejad, S.M., Alakhdar, M., Vinches, L., Hallé, S. (2025). A novel methodology for calculating thermal conductivity of natural hollow fibers with validation in nonwoven fabric structures. International Communications in Heat and Mass Transfer, 167(A), 109269. CR - 40. Wang, Y., Lu, Y., Li, J. & Pan, J. (2012). Effects of air gap entrapped in multilayer fabrics and moisture on thermal protective performance. Fibers and Polymers, 13, 647-652. CR - 41. Das, T., Das, A. & Alagirusamy, R. (2022). Study on thermal protective performance of thermal liner in a multi-layer clothing under radiant heat exposure. Journal of Industrial Textiles, 51(5_suppl), 8208S-8226S. CR - 42. Romeli, D., Barigozzi, G., Esposito, S., Rosace, G. & Salesi, G. (2013). High sensitivity measurements of thermal properties of textile fabrics. Polymer Testing, 32(6), 1029-1036. CR - 43. Sampath, M., Aruputharaj, A., Senthilkumar, M. & Nalankilli, G. (2011). Analysis of thermal comfort characteristics of moisture management finished knitted fabrics made from different yarns. Journal of Industrial Textiles, 42(1), 19-33. CR - 44. Jukl, N., Firšt Rogale, S. & Rogale, D. (2023). The influence of compressibility on the thermal contact conductivity of diamond-shaped quilted lining for special purpose clothing. Tekstil, 72(3), Online first. CR - 45. Wilson, C.A., Laing, R.M. & Carr, D.J. (2002). Air and air spaces-the invisible addition to thermal resistance. Journal of the Human Environmental System, 5(2), 69-77. CR - 46. Weedall, P.J. & Goldie, L. (2001). The objective measurement of the ‘cool feeling’ in fabrics. Journal of The Textile Institute, 92(1, Part 4), 379-386. CR - 47. Li, Y. (2001). The science of clothing comfort. Textile Progress, 31(1-2), 1-135. CR - 48. Havenith, G., Holmér, I. & Parsons, K. (2002). Personal factors in thermal comfort assessment: Clothing properties and metabolic heat production. Energy and Buildings, 34(6), 581-591. CR - 49. Knížek, R., Tunák, M., Tunáková, V. & Honzíková, P. (2024). Effect of membrane morphology on the thermo-physiological comfort of outdoor clothing. Journal of Engineered Fibers and Fabrics, 19. CR - 50. Khakpour, A., Gibbons, M. & Chandra, S. (2021). Effect of moisture condensation on vapour transmission through porous membranes. Journal of Industrial Textiles, 51(2_suppl), 1931S-1951S. CR - 51. He, H. & Yu, Z. (2018). Effect of air gap entrapped in firefighter protective clothing on thermal resistance and evaporative resistance. Autex Research Journal, 18(1), 28-34. UR - https://doi.org/10.21605/cukurovaumfd.1777344 L1 - https://dergipark.org.tr/tr/download/article-file/5210387 ER -