TY - JOUR T1 - Üretken Yapay Zekânın 3–12 Yaş Çocukların Eğitiminde Pedagojik, Duyuşsal ve Kapsayıcı Etkileri: PRISMA Tabanlı Sistematik Bir İnceleme TT - Pedagogical, Affective, and Inclusive Impacts of Generative Artificial Intelligence in the Education of Children Aged 3–12: A PRISMA–Based Systematic Review AU - Ozturk, Elif PY - 2025 DA - November Y2 - 2025 JF - Necmettin Erbakan Üniversitesi Ereğli Eğitim Fakültesi Dergisi JO - NEEEF PB - Necmettin Erbakan Üniversitesi WT - DergiPark SN - 2687-1831 SP - 293 EP - 316 VL - 7 IS - Özel Sayı LA - tr AB - Bu sistematik derleme, 3–12 yaş aralığındaki çocuklarda üretken yapay zekâ (ÜYZ) uygulamalarının akademik, duyuşsal ve kapsayıcılık çıktıları üzerindeki etkilerine ilişkin mevcut ampirik kanıtları PRISMA 2020 kılavuzu doğrultusunda sentezlemektedir. Altı veri tabanı ve gri literatür kaynaklarında yapılan kapsamlı tarama sonucunda, dahil edilme ölçütlerini karşılayan 42 çalışma incelenmiştir. Bulgular, ÜYZ’nin dil gelişimi, yazma becerileri, okuduğunu anlama ve matematik problem çözme gibi alanlarda öğrenmeyi desteklediğini, ayrıca motivasyon ve öz-düzenleme üzerinde olumlu etkiler yarattığını göstermektedir. Bununla birlikte veri güvenliği, etik yönetişim ve öğretmen arabuluculuğu, özellikle erken yaş gruplarında başarının kritik koşulları olarak öne çıkmaktadır. Çalışma, ÜYZ’nin pedagojik potansiyelini çocuk hakları, etik ilkeler ve kapsayıcı eğitim çerçevesinde yeniden tanımlamakta; gelecekteki araştırma, politika ve uygulamalara yönelik yol gösterici öneriler sunmaktadır. KW - Üretken Yapay Zekâ KW - Erken Çocukluk Eğitimi KW - İlkokul KW - Sistematik Derleme N2 - This systematic review synthesizes the existing empirical evidence on the effects of generative artificial intelligence (GenAI) applications on academic, affective, and inclusive outcomes among children aged 3–12, in line with the PRISMA 2020 guidelines. A comprehensive search across six databases and grey literature sources identified 42 studies that met the inclusion criteria. The findings indicate that GenAI contributes to language development, writing skills, reading comprehension, and mathematical problem-solving, while also fostering motivation and self-regulation. At the same time, issues such as data security, ethical governance, and teacher mediation emerge as critical conditions for success, particularly in early childhood contexts. This review redefines the pedagogical potential of GenAI within the frameworks of children’s rights, ethical principles, and inclusive education, offering actionable recommendations for future research, policy, and practice. CR - Adeshola, I., & Adepoju, A. P. (2023). The opportunities and challenges of ChatGPT in education. Interactive Learning Environments, 31(10), 7427-7440. https://doi.org/10.1080/10494820.2023.2253858 CR - Akgün, S., & Greenhow, C. (2022). Artificial intelligence in education: Addressing ethical challenges in K-12 settings. AI and Ethics, 2(3), 431-440. https://doi.org/10.1007/s43681-021-00096-7 CR - Almahri, F. A. J., Bell, D., & Arzoky, M. (2022). The ethical challenges of AI in education: A systematic review. Computers and Education: Artificial Intelligence, 3, 100085. https://doi.org/10.1016/j.caeai.2022.100085 CR - American Academy of Pediatrics. (2016). Media and young minds. Pediatrics, 138(5), e20162591. https://doi.org/10.1542/peds.2016-2591 CR - Baidoo-Anu, D., & Owusu Ansah, L. (2023). Education in the era of generative artificial intelligence (AI): Understanding the potential benefits of ChatGPT in promoting teaching and learning. Journal of AI, 7(1), 52–62. https://doi.org/10.61969/jai.1331877 CR - Baz, M. A., Alhuwaydi, A. M., Alzahrani, S. S., & Alqarni, D. A. (2025). The effect of AI chatbot feedback on fifth-grade informative writing. Open Praxis, 17(3), 871-885. https://doi.org/10.55982/openpraxis.17.3.871 CR - Belpaeme, T., Kennedy, J., Ramachandran, A., Scassellati, B., & Tanaka, F. (2018). Social robots for education: A review. Science Robotics, 3(21), eaat5954. https://doi.org/10.1126/scirobotics.aat5954 CR - Borenstein, J., & Howard, A. (2021). Emerging challenges in AI and the need for AI ethics education. International Journal of Artificial Intelligence in Education, 31(3), 527-541. https://doi.org/10.1007/s40593-020-00215-1 CR - Bozkurt, A. (2024). Why generative AI literacy, why now? Open Praxis, 16(3), 267-283. https://doi.org/10.55982/openpraxis.16.3.739 CR - Celik, I. (2023). Towards a human-centered AI in education: A critical review. Educational Technology Research and Development, 71(1), 1–24. https://doi.org/10.1007/s11423-022-10152-6 CR - Celik, I., Dindar, M., Muukkonen, H., & Järvelä, S. (2022). The promises and challenges of artificial intelligence for teachers: A systematic review of research. Educational Technology Research and Development, 70(3), 2059-2087. https://doi.org/10.1007/s11423-022-10112-0 CR - Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264-75278. https://doi.org/10.1109/ACCESS.2020.2988510 CR - Chiu, T. K. F. (2023). Future research recommendations for transforming higher education with generative AI. Computers and Education: Artificial Intelligence, 5, 100157. https://doi.org/10.1016/j.caeai.2023.100157 CR - Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education (8th ed.). Routledge. https://doi.org/10.4324/9781315456539 CR - Cotton, D. R. E., Cotton, P. A., & Shipway, J. R. (2023). Chatting and cheating: Ensuring academic integrity in the era of ChatGPT. Innovations in Education and Teaching International, 60(5), 681–689. https://doi.org/10.1080/14703297.2023.2190148 CR - Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). SAGE Publications. CR - Çelik, İ. (2023). Exploring the determinants of artificial intelligence (AI) literacy: Digital divide, computational thinking, cognitive absorption. Telematics and Informatics, 83, 102026. https://doi.org/10.1016/j.tele.2023.102026 CR - Demir, K., & Akpınar, E. (2023). The effect of artificial intelligence-based learning environments on student achievement and motivation: A meta-analysis study. Education and Information Technologies, 28(11), 14763-14788. https://doi.org/10.1007/s10639-023-11834-1 CR - Deng, R., Wang, J., & Chen, L. (2024). Does ChatGPT enhance student learning? A systematic review and meta-analysis. Computers & Education, 207, 104896. https://doi.org/10.1016/j.compedu.2024.104896 CR - Dignum, V. (2021). The role and challenges of education for responsible AI. London Review of Education, 19(1), 1-11. https://doi.org/10.14324/LRE.19.1.01 CR - Etkin, H. K., Yilmaz, O., & Demir, E. (2025). Differential effects of GPT-based tools on reading comprehension by baseline ability in early elementary grades. Frontiers in Education, 10, Article 1506752. https://doi.org/10.3389/feduc.2025.1506752 Evmenova, A. S., Regan, K., Mergen, R., & Hrisseh, R. (2024). Improving writing feedback for struggling writers: Generative AI to the rescue. TechTrends, 68, 1190-1202. https://doi.org/10.1007/s11528-024-00965-y CR - Farrokhnia, M., Banihashem, S. K., Noroozi, O., & Wals, A. (2023). A SWOT analysis of ChatGPT: Implications for educational practice and research. Innovations in Education and Teaching International, 61(2), 460-474. https://doi.org/10.1080/14703297.2023.2195846 CR - Gharaibeh, M., Al-Smadi, M., Jarrah, M., & Alzyoud, S. (2025). The potential of ChatGPT in enhancing reading comprehension for children with dyslexia: A pilot intervention study. International Journal of Language & Communication Disorders. Advance online publication. https://doi.org/10.1111/1460-6984.13015 CR - Goswami, U. (2014). Child cognitive development: The importance of the prefrontal cortex and executive functions. British Journal of Educational Psychology, 84(1), 1–23. https://doi.org/10.1111/bjep.12052 CR - Heung, V. W. Y. (2025). The effects of generative AI on students’ emotional engagement: A meta-analysis. Computers and Education: Artificial Intelligence, 6, 100301. https://doi.org/10.1016/j.caeai.2025.100301 CR - Holmes, W., Persson, J., Chounta, I. A., Wasson, B., & Dimitrova, V. (2022). Artificial intelligence and education: A critical view through the lens of human rights, democracy and the rule of law. Council of Europe. (Rapor) https://rm.coe.int/artificial-intelligence-and-education-a-critical-view-through-the-lens/1680a886bd CR - Hong, Q. N., Fàbregues, S., Bartlett, G., Boardman, F., Cargo, M., Dagenais, P., Gagnon, M.-P., Griffiths, F., Nicolau, B., O’Cathain, A., Rousseau, M.-C., Vedel, I., & Pluye, P. (2018). The Mixed Methods Appraisal Tool (MMAT) version 2018 for information professionals and researchers. Education for Information, 34(4), 285–291. https://doi.org/10.3233/EFI-180221 CR - Huang, C., Li, Y., & Zhang, M. (2025). Enhancing student reading performance through GenAI-supported PBL. Humanities and Social Sciences Communications, 12, 299. https://doi.org/10.1057/s41599-025-04919-4 CR - Jürgensmeier, L., Schneider, J., & Schiffner, D. (2024). Generative AI for scalable feedback on multimodal exercises in primary education. Computers & Graphics, 114, 1-13. https://doi.org/10.1016/j.cag.2024.03.005 CR - Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., Stadler, M., Weller, J., Kuhn, J., & Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, Article 102274. https://doi.org/10.1016/j.lindif.2023.102274 CR - Lee, J., Yoon, S., Lee, K., Jeong, E., Cho, J. E., Park, W., Yim, D., & Hwang, I. (2024). Open Sesame? Open Salami! Personalizing Vocabulary Assessment-Intervention for Children via Pervasive Profiling and Bespoke Storybook Generation. In CHI 2024 - Proceedings of the 2024 CHI Conference on Human Factors in Computing Sytems Article 120 (Conference on Human Factors in Computing Systems - Proceedings). Association for Computing Machinery. https://doi.org/10.1145/3613904.3642580 CR - Liu, J., Wang, Q., & Zhang, H. (2025). Implementing ChatGPT-MPS for mathematics problem solving in primary classrooms: Effects on achievement and motivation. Computers & Education: Artificial Intelligence, 6, 100277. https://doi.org/10.1016/j.caeai.2025.100277 CR - Luckin, R., Holmes, W., Griffiths, M., & Forcier, L. B. (2016). Intelligence unleashed: An argument for AI in education. Pearson Education. https://www.pearson.com/content/dam/one-dot-com/one-dot-com/global/Files/about-pearson/innovation/open-ideas/Intelligence-Unleashed.pdf CR - NAEYC, & Fred Rogers Center. (2012). Technology and interactive media as tools in early childhood programs serving children from birth through age 8. National Association for the Education of Young Children. https://www.naeyc.org/sites/default/files/globally-shared/downloads/PDFs/resources/position-statements/ps_technology.pdf CR - Organisation for Economic Co-operation and Development. (2023). Education at a glance 2023: OECD indicators. OECD Publishing. https://doi.org/10.1787/69096873-en CR - Organization for Economic Co-operation and Development [OECD]. (2019). OECD AI principles. OECD Publishing. https://oecd.ai/en/ai-principles CR - Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., … Welch, V. A. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 89. https://doi.org/10.1186/s13643-021-01626-4 CR - Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., … Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71 CR - Piaget, J. (1952). The origins of intelligence in children (M. Cook, Trans.). International Universities Press. (Original work published 1936) CR - Saborío-Taylor, S., & Rojas-Ramírez, F. (2024). Universal design for learning and AI in the digital era. International Journal of Professional Development, Learners and Learning, 6(2), ep2408. https://doi.org/10.30935/ijpdll/14694 CR - Selwyn, N. (2019). Should robots replace teachers? AI and the future of education. Polity Press. CR - Song, Y., Wang, J., & Chen, X. (2024). A framework for inclusive AI learning design for diverse learners in primary education. Computers & Education: Artificial Intelligence, 5, 100201. https://doi.org/10.1016/j.caeai.2024.100201 CR - Steiss, J., Tate, T., Graham, S., Cruz, J., Hebert, M., Wang, J., Moon, Y., Tseng, W., & Warschauer, M. (2024). Comparing the quality of human and ChatGPT feedback of students’ writing. Learning and Instruction, 91, 101894. https://doi.org/10.1016/j.learninstruc.2024.101894 CR - Sterne, J. A. C., Hernán, M. A., Reeves, B. C., Savović, J., Berkman, N. D., … Higgins, J. P. T. (2016). ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ, 355, i4919. https://doi.org/10.1136/bmj.i4919 CR - Su, J., & Yang, W. (2022). A systematic review of integrating AI into early childhood education: Implications for research and practice. Computers and Education Open, 3, 100076. https://doi.org/10.1016/j.caeo.2022.100076 CR - Tai, T.-Y., & Chen, J. C. (2024). Improving elementary EFL learners’ speaking skills through interactions with generative AI chatbots: A randomized controlled trial. Computers & Education, 205, 105112. https://doi.org/10.1016/j.compedu.2024.105112 CR - TeachAI. (2024). AI guidance for schools toolkit. https://www.teachai.org/toolkit CR - Timms, M. J. (2016). Letting artificial intelligence in education out of the box: Educational cobots and smart classrooms. International Journal of Artificial Intelligence in Education, 26(2), 701-712. https://doi.org/10.1007/s40593-016-0095-y CR - U.S. Department of Education, Office of Educational Technology. (2023). Artificial intelligence and the future of teaching and learning: Insights and recommendations. https://www2.ed.gov/documents/ai-report/ai-report.pdf CR - UN Committee on the Rights of the Child. (2021). General Comment No. 25 (2021) on children’s rights in relation to the digital environment. CRC/C/GC/25. https://www.ohchr.org/en/documents/general-comments-and-recommendations/general-comment-no-25-2021-children’s-rights-relation CR - UNICEF. (2021). Policy guidance on AI for children (2nd ed.). UNICEF. https://www.unicef.org/globalinsight/media/2356/file/UNICEF-Global-Insight-policy-guidance-AI-children-2.0-2021.pdf CR - United Nations Educational, Scientific and Cultural Organization [UNESCO]. (2011). International Standard Classification of Education: ISCED 2011. UNESCO Institute for Statistics. https://uis.unesco.org/en/topic/international-standard-classification-education-isced CR - Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. Harvard University Press. CR - Zhang, K., & Aslan, A. B. (2021). AI technologies for education: Recent research & future directions. Computers and Education: Artificial Intelligence, 2, 100025. https://doi.org/10.1016/j.caeai.2021.100025 CR - Zhang, K., & Aslan, A. B. (2021). AI technologies for education: Recent research & future directions. Computers and Education: Artificial Intelligence, 2, 100025. https://doi.org/10.1016/j.caeai.2021.100025 UR - https://dergipark.org.tr/tr/pub/neueefd/issue//1785475 L1 - https://dergipark.org.tr/tr/download/article-file/5248140 ER -