TY - JOUR T1 - Investigation of the effects of precision-casting waste sands on the thermal shock resistance properties of fire clay refractory materials TT - Hassas döküm atık kumlarının ateş kili refrakter malzemelerin termal şok direnci özelliklerine etkilerinin araştırılması AU - Bostancı, Veysel Murat AU - Bahtlı, Tuba PY - 2025 DA - October Y2 - 2024 JF - Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi PB - Pamukkale Üniversitesi WT - DergiPark SN - 2147-5881 SP - 734 EP - 743 VL - 31 IS - 5 LA - en AB - Precision-casting is a casting process that minimizes porosity and has the power to produce exact shapes and sizes of parts. In the metal part production sector, precision-casting is the closest casting form to the final version of the part. Using single-use aluminosilicate molds in casting operations causes a storage problem after precision-casting, which adds to the expanding waste problem. Moreover, the disposal of this waste without recycling poses environmental concerns. Interestingly, the waste contains zircon minerals, which are well-known for improving refractories' mechanical, thermal, and corrosion-resistant qualities. The aim of this study is to produce fireclay refractory bricks that have decreased manufacturing costs, increased mechanical and thermal properties, and are improved by the addition of precision-casting sand. Density and open porosity were determined using the Archimedes principle. Cold crushing strength was tested according to ASTM-C133, and three-point bending tests were performed according to ASTM-C1161-90 standards. For thermal shock resistance, samples were heated to 1000 °C for 30 minutes and then quenched in water. Finally, microstructure analyses were conducted using a scanning electron microscope (SEM). Compared to the additive-free fireclay refractory, samples containing X2, Y2, and Z1 precision-casting waste sand (PCWS) showed increases in 3-point bending strength by 27%, 10%, and 5%, respectively, after undergoing thermal shock testing. Similarly, with the addition of PCWS, X2 and Y2 samples exhibited increases of 17% and 33% in cold crushing strength (CCS) values KW - Thermal Shock KW - Waste KW - Mechanical properties KW - Refractory KW - Precision-casting KW - Fireclay N2 - Hassas döküm, gözenekliliği en aza indiren ve parçaların tam şekil ve boyutlarını üretebilme gücüne sahip bir döküm işlemidir. Hassas döküm, metal parça imalat endüstrisinde nihai parça versiyonuna en yakın döküm şeklidir. Döküm işlemlerinde tek kullanımlık alüminasilikat esaslı kalıpların kullanımı, hassas döküm sonrası bir depolama sorununa yol açmakta ve giderek artan bir atık sorununa katkıda bulunmaktadır. Dahası, bu atığın geri dönüşüm olmadan bertaraf edilmesi çevresel endişelere yol açmaktadır. Özellikle, atık zirkon minerali içermekte ve bu mineraller refrakterlerin mekanik, termal ve korozyon özelliklerini arttırmakla bilinmektedir. Bu araştırma, maliyetleri düşürülmüş, mekanik ve termal özellikleri arttırılmış ve hassas döküm kumu eklenerek iyileştirilmiş ateş tuğlası refrakterler oluşturmayı amaçlamaktadır. Yoğunluk ve açık gözeneklilik, Arşimet prensibiyle belirlenmiştir. ASTM-C133 standardına göre soğuk basma mukavemeti, ASTM-C1161-90 standardına göre üç nokta eğme testleri gerçekleştirilmiştir. Isıl şok dayanımı için numuneler, 1000 °C’de 30 dk. bekletildikten sonra suya daldırılarak test edilmiştir. Son olarak, mikroyapı analizleri taramalı elektron mikroskobu (SEM) ile yapılmıştır. Katkısız şamot refrakterine kıyasla, X2, Y2 ve Z1 hassas döküm atık kumu (PCWS) eklenen numunelerde, termal şok testi sonrasında 3 nokta eğilme mukavemeti sırasıyla %27, %10 ve %5 oranında artmıştır. Benzer şekilde, PCWS ilavesiyle X2 ve Y2 numunelerinde soğuk ezme mukavemeti (CCS) değerlerinde sırasıyla %17 ve %33 oranında artış gözlemlenmiştir. CR - [1] Yan J, Dai Y, Yan W, Jin S, Wang X, Li Y. “Effect of microporous aggregates and spinel powder on fracture behavior of magnesia-based refractories”. Journal of the European Ceramic Society, 42(16), 7648-7655, 2022. CR - [2] Zhou W, Yan W, Ma S, Schafföner S, Dai Y, Li Y. “Degradation mechanisms of periclase-magnesium aluminate spinel refractory bricks used in the upper transition zone of a cement rotary kiln”. Construction and Building Materials, 272, 121617, 2021. CR - [3] Dai Y, Li Y, Jin S, Harmuth H, Xu X. “Fracture behavior of magnesia refractory materials under combined cyclic thermal shock and mechanical loading conditions”. Journal of the American Ceramic Society, 103, 1956-1969, 2020. CR - [4] Gruber D, Sistaninia M, Fasching C, Kolednik O. “Thermal shock resistance of magnesia spinel refractories-Investigation with the concept of configurational forces”. Journal of the European Ceramic Society, 36(16), 4301-4308, 2016. CR - [5] Andrews A, Nsiah-Baafi E, Gawu S.K.Y., Olubambi P.A. “Synthesis of high alumina refractories from lithomargic clay”. Ceramics International, 40(4), 6071-6075, 2014. CR - [6] Andrews A, Adam J, Gawu S.K.Y. Development of fireclay aluminosilicate refractory from lithomargic clay deposits. Ceramics International, 39(1), 779-783, 2013. CR - [7] American Society for Testing and Materials. “Standard Classification of Fireclay and High-Alumina Refractory Brick”. https://www.astm.org/c0027-98r18.html (10.12.2021). CR - [8] Francois C. Materials Handbook. 2nd ed. London, United Kingdom, Springer, 2008. CR - [9] Hossain SkS, Roy PK. “Sustainable ceramics derived from solid wastes: a review”. Journal of Asian Ceramic Societies, 8(4), 984-1009, 2020. CR - [10] Lingling X, Wei G, Tao W, Nanru Y. “Study on fired bricks with replacing clay by fly ash in high volume ratio”. Construction and Building Materials, 19(3), 243-247, 2005. CR - [11] Mahapatra MK. “Review of corrosion of refractory in gaseous environment”. International Journal of Applied Ceramic Technology, 17(2), 606-615, 2020. CR - [12] Krishnan M, Manikandan R, Thenmuhil D. “Effect of heat treatment and zircon addition on the properties of low-cement castables based on recycled alumina grog”. Ceramics International, 47(3), 3430-3443, 2021. CR - [13] Suchanek W.L. “Hydrothermal Synthesis of Alpha Alumina (α-Al2O3) Powders: Study of the Processing Variables and Growth Mechanisms”. Journal of the American Ceramic Society, 93(2), 399-412, 2010. CR - [14] Xu X, Li J, Wu J, Tang Z, Chen L, Li Y, Lu C. “Preparation and thermal shock resistance of corundum-mullite composite ceramics from andalusite”. Ceramics International, 43(2), 1762-1767, 2017. CR - [15] Zhang FC, Luo HH, Roberts SG. “Mechanical properties and microstructure of Al2O3/mullite composite”. Journal of Materials Science, 42, 6798-6802, 2007. CR - [16] Zhao H, Ye C, Fan Z. “A simple and effective method for gel casting of zirconia green bodies using phenolic resin as a binder”. Journal of the European Ceramic Society, 34(5), 1457-1463, 2014. CR - [17] Leo S, Tallon C, Stone N, Franks GV. “Near-Net-Shaping Methods for Ceramic Elements of (Body) Armor Systems”. Journal of the American Ceramic Society, 97(10), 3013-3033, 2014. CR - [18] Sereni JGR. Reference Module in Materials Science and Materials Engineering. 1st ed. Amsterdam, Netherlands, Elsevier, 2016. CR - [19] Xiang R, Li Y, Li S, Xue Z, He Z, Ouyang S, Xu N. “The potential usage of waste foundry sand from investment casting in refractory industry”. Journal of Cleaner Production, 211, 1322-1327, 2019. CR - [20] Avcıoğlu C, Bekheet MF, Artır R. “Radiation shielding and mechanical properties of mullite-zirconia composites fabricated from investment-casting shell waste”. Journal of Materials Research and Technology, 24, 5883-5895, 2023. CR - [21] Reinhart TJ, Brinson HF. Engineered Materials Handbook: Ceramics and Glasses. 1st ed. USA, ASM International, 1991. CR - [22] Özdemir S. Recycling of Investment Casting Shell Mold Sands in Ceramic Industry. MSc Thesis, Marmara University, Istanbul, Türkiye, 2013. CR - [23] Erdem Y. Hassas Döküm Atık Kumunun, Duvar Karosu, Porselen Karo ve Opak Sır Üretiminde Kullanımının Araştırılması. Doktora Tezi, Necmettin Erbakan Üniversitesi, Konya, Türkiye, 2023. CR - [24] Avcıoğlu C. Reuse of Spent Investment Casting Foundry Sands in the Production of Structural Ceramics. Doctoral Thesis, Marmara University, Istanbul, Turkey, 2023. CR - [25] Jigao L, Yuan-cai L, Tan S. “Experimental study on separation of valuable refractory aggregate from investment casting ceramic shell waste”. China Foundry, 13(4), 243-247, 2016. CR - [26] Li J, Li Y, Wang L. “Study on technology of iron removal during recycling of shell of investment casting”. Advanced Materials Research, 634-638, 3181-3184, 2013. CR - [27] British Standard. “BS 7134-Testing of Engineering Ceramics: General and Textural Properties-Method for Determination of the Presence of Cracks and Other Defects by Dye Penetration Tests”. London, United Kingdom: British Standards Institution, 1989. CR - [28] Aksel, C. “The effect of mullite on the mechanical properties and thermal shock behaviour of alumina-mullite refractory materials”. Ceramics International, 29, 183–188, 2003. CR - [29] Ceylantekin R, Aksel C. “MgO-Spinel kompozit refrakterlere ZrSiO4 ilavesinin korozyon davranışına etkisi”. Anadolu Üniversitesi Bilim ve Teknoloji Dergisi-A Uygulamalı Bilim ve Mühendislik, 11, 103-114, 2010. CR - [30] Meng W, Ma C, Ge T, Zhong X. “Effect of zircon addition on the physical properties and coatability adherence of MgO–2CaO·SiO2–3CaO·SiO2 refractory materials”. Ceramics International, 42(7), 9032-9037, 2016. CR - [31] Xiang R, Li Y, Li S, Ma X, Li Y, Sang S. “Effect of zircon content on the microstructure and physical properties of chamotte refractories”. Key Engineering Materials, 697, 604-607, 2016. CR - [3] Bahtli T, Bostanci VM. “Effect of precision casting sand waste of 4140 steel on the sintering and densification behaviour of chamotte refractories”. Journal of Thermal Analysis and Calorimetry, 142, 2385-2390, 2020. CR - [33] Biswas N, Chaudhuri S. “Comparative study of zirconia-mullite and alumina-zirconia composites”. Bulletin of Materials Science, 22, 37-47, 1999. CR - [34] Chandra D, Das GC, Sengupta U, Maitra S. “Studies on the reaction sintered zirconia-mullite-alumina composites with titania as additive”. Ceramica, 59(351), 487-494, 2013. CR - [35] Aksel C, Aksoy T. “Improvements on the thermal shock behaviour of MgO-spinel composite refractories by incorporation of zircon-3 mol% Y2O3”. Ceramics International, 38(5), 3673-3681, 2012. CR - [36] Lin SK, Wu CH. “Improvement of Bond Strength and Durability of Recycled Aggregate Concrete Incorporating High Volume Blast Furnace Slag”. Materials (Basel), 14(13), 3708, 2021. CR - [37] Bahtli T, Aksel C. “Thermal Shock Behaviour of Magnesia–Hercynite-Spinel Composite Refractories”. Journal of Multidisciplinary Engineering Science and Technology, 3(6), 5083-5088, 2016. CR - [38] Dana K, Sinhamahapatra S, Tripathi HS, Ghosh A. “Refractories of alumina-silica system”. Transactions of the Indian Ceramic Society, 73, 1–13, 2014. CR - [39] Liu KC, Thomas G, Caballero A, Moya JS, De Aza S. “Mullite formation in kaolinite-α-alumina”. Acta Metallurgica et Materialia, 42, 489–495, 1994. CR - [40] Köksal NS, Ünlü BS, Meriç C. “Alümina esaslı refrakter tuğlaların ısıl şok davranışlarının incelenmesi”. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 9(2), 147-151, 2003. CR - [41] Başpınar MS. Mullit Refrakterlerde Bağlayıcı Fazın Optimizasyonu. Doktora Tezi, Anadolu Üniversitesi, Eskişehir, Türkiye, 2005. CR - [42] Bahtli T, Bostanci VM. “Paslanmaz çeliklerin hassas döküm kumu atıklarının katılmasıyla üretilen beyaz ergimiş alümina refrakterlerinin mekanik özellikleri ve termal şok dayanımları”. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilim Dergisi, 19, 440–446, 2019. UR - https://dergipark.org.tr/tr/pub/pajes/issue//1801336 L1 - https://dergipark.org.tr/tr/download/article-file/5320340 ER -