TY - JOUR T1 - Analytical Estimation of Magnetization Behavior in Packed Ferromagnetic Beds for High-Gradient Magnetic Filtration TT - Yüksek Gradyanlı Manyetik Filtrasyon için Paketlenmiş Ferromanyetik Yataklarda Mıknatıslanma Davranışının Analitik Olarak Tahmin Edilmesi AU - Yildiran, Nisanur AU - Abbasov, Teymuraz AU - Karadag, Teoman AU - Arı, Ali PY - 2025 DA - November Y2 - 2025 DO - 10.2339/politeknik.1808952 JF - Politeknik Dergisi PB - Gazi Üniversitesi WT - DergiPark SN - 2147-9429 SP - 1 EP - 1 LA - en AB - Magnetic filters are effectively used for the removal of low-concentration and submicron-sized magnetic particles from industrial liquids and gases. The matrices of magnetic filters are composed of ferromagnetic fillers (balls, rods, plates, metal shavings, etc.) that can be easily magnetized in an external magnetic field and have various geometries. Calculating the high-gradient magnetic fields formed in the pores of the filled beds and determining the force effect are crucial for the theory and practice of magnetic filtration and separation. Due to the tiny size of the pores, direct measurement and evaluation of magnetic field intensity in these regions are challenging. Therefore, various approximate methods are employed to model magnetized filled beds. This study primarily investigates the magnetization characteristics of filled beds composed of ferromagnetic balls. The analytical expressions of the main magnetization curves of this type of filled bed have been obtained. These expressions have been formulated in a way that can be easily used in engineering practice calculations. The theoretical calculations obtained have been compared with some experimental results from the literature, and recommendations have been made for the use of these formulas in the design, control, and optimization of magnetic filters. KW - magnetic filter KW - ferromagnetic material KW - packed bed KW - porosity KW - magnetization N2 - Manyetik filtreler, endüstriyel sıvı ve gazlardan düşük konsantrasyonlu ve mikron altı boyutlardaki manyetik parçacıkların uzaklaştırılmasında etkili bir şekilde kullanılmaktadır. Manyetik filtrelerin matrisleri, dış manyetik alan altında kolayca mıknatıslanabilen ve çeşitli geometrilere sahip ferromanyetik dolgu malzemelerinden (bilyeler, çubuklar, plakalar, metal talaşları vb.) oluşur. Dolu yatakların gözeneklerinde oluşan yüksek gradyanlı manyetik alanların hesaplanması ve bu alanların oluşturduğu kuvvet etkisinin belirlenmesi, manyetik filtrasyon ve ayrıştırma süreçlerinin teorisi ve mühendislik uygulamaları açısından kritik öneme sahiptir. Gözeneklerin çok küçük olması nedeniyle bu bölgelerdeki manyetik alan şiddetinin doğrudan ölçümü ve değerlendirilmesi oldukça zordur. Bu nedenle, mıknatıslanmış dolu yatakların modellenmesinde çeşitli yaklaşık yöntemler kullanılmaktadır. Bu çalışma, öncelikle ferromanyetik bilyelerden oluşan dolu yatakların mıknatıslanma karakteristiklerini incelemektedir. Bu tip dolu yatağın temel mıknatıslanma eğrilerinin analitik ifadeleri elde edilmiştir. Elde edilen ifadeler, mühendislik uygulamalarında hesaplamalara kolayca entegre edilebilecek bir biçimde formüle edilmiştir. Teorik hesaplamalar, literatürdeki bazı deneysel sonuçlarla karşılaştırılmış ve bu formüllerin manyetik filtrelerin tasarımı, kontrolü ve optimizasyonunda kullanımı için öneriler sunulmuştur. CR - [1] Abbasov T., “Some Actual Problems of Magnetic Filters with Magnetized Packed Beds and Comparative Analysis of Filter Performances.” IEEE Trans Magn, 55. (2019). CR - [2] Watson JHP., “Magnetic filtration.”, J Appl Phys, 44:4209–13. (1973). CR - [3] de Latour C. Magnetic Separation in Water Pollution Control. IEEE Trans Magn, 9:314–6. (1973). CR - [4] Svoboda J., “Magnetic techniques for the treatment of materials.”, Magnetic Techniques for the Treatment of Materials, (2004). CR - [5] Yavuz CT, Prakash A, Mayo JT, Colvin VL., “Magnetic separations: From steel plants to biotechnology.”, Chem Eng Sci, 64:2510–21., (2009). CR - [6] Iranmanesh M, Hulliger J. “Magnetic separation: its application in mining, waste purification, medicine, biochemistry and chemistry.”, Chem Soc Rev, 46:5925–34. (2017). CR - [7] Ge W, Encinas A, Araujo E, Song S. “Magnetic matrices used in high gradient magnetic separation (HGMS): A review.” Results Phys, 7:4278–86., (2017). CR - [8] Karmazin V. “Magnetic Methods of benefication.” Nedra, (1984). CR - [9] N.F.Myasnikov. “Polygradient magnetic seperators.” Moscow: Nedra, (1973). CR - [10] Tesanovic M, Zimmermann I, Schneider M, Berensmeier S. “Modeling magnetic separation for hIgG purification: A theoretical and experimental study.”, Sep Purif Technol, 369:132791, (2025). CR - [11] Yavuz CT, Prakash A, Mayo JT, Colvin VL. “Magnetic separations: From steel plants to biotechnology.” Chem, Eng Sci 64:2510–21., (2009). CR - [12] Franzreb M, Siemann-Herzberg M, Hobley TJ, “Thomas ORT. Protein purification using magnetic adsorbent particles.”, Appl Microbiol Biotechnol, 70:505–16., (2006). CR - [13] Song M, Kim S, Lee K. “Development of a Magnetic Filter System Using Permanent Magnets for Separating Radioactive Corrosion Products from Nuclear Power Plants.”, Sep Sci Technol,39:1037–57., (2005). CR - [14] Borlido L, Azevedo AM, Roque ACA, Aires-Barros MR. “Magnetic separations in biotechnology.” Biotechnol Adv, 31:1374–85., (2013). CR - [15] Xiao J, Dong Q, Xu Y, Li C, Zeng J, Xia X, et al. “Magnetically Actuated Nanomaterials in Biomedical Applications.” Adv Nanobiomed Res 4:2300136., (2024). CR - [16] Abbasov T. “Magnetic filtration with magnetized granular beds: Basic principles and filter performance.” China Particuology, 5:71–83. (2007). CR - [17] Herdem S, Abbasov T, Köksal M. “Filtration model of high gradient magnetic filters with granular matrix.”, Powder Technol, 106:176–82. (1999). CR - [18] Abbasov T, Herdem S. “Analysis of Magnetization Properties of the Ferromagnetic Granular Beds.”, IEEE Trans Magn 52., (2016). CR - [19] Abbasov T. “Theoretical interpretation of the filtration process in magnetized packed beds.”, Powder Technol 115:215–20., (2001). CR - [20] Karadag T, Abbasov T, Karadag MO. “Measuring, Evaluating, and Mapping the Electromagnetic Field Levels in Turgut Ozal Medical Center Building and Environment.” Journal of Turgut Ozal Medical Center 21:186–95., (2014). CR - [21] Strayer J, Choe H, Wu X, Iyer PR, Gómez-Pastora J, “Moorman W, et al. Separation of intrinsically magnetic cells using magnetic filters.”, Sep Purif Technol, 368., (2025). CR - [22] Dvorsky R, Lesňák M, Pištora J, Mančík P, Bednář J. “Experimentally verified physical model of ferromagnetic microparticles separation in magnetic gradient inside a set of steel spheres.”, Sep Purif Technol, 239:116460., (2020). CR - [23] Epelboin I, Quivy D. “Sur la permittivite et la permeabilite magnetique des melanges n.d.” CR - [24] Bruggeman DAG. “Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen.”, Ann Phys 416:636–64. (1935). CR - [25] Grigoryev MN, Kirko IM. “Estimation of the magnetized properties of magnetodielectric structures.”, Journal of Technical Physics, 26:1501–8., (1956). CR - [26] Tolmachev ST, Fainshtein EG. “Average permeability of packing balls bed.”, Theoretical Electrotechnics 144–51., (1972). CR - [27] Preobrazhensky A, Bishard E. “Magnetic Materials and Elements.”, Moscow; (1986). CR - [28] Kurz W, Birss RR. “Particle motion near and capture on single spheres in hgms.”, IEEE Trans Magn 17:2801–3., (1981). CR - [29] FriedLaender FJ, Takayasu M. “A Study Of The Mechanisms Of Particle Buildup On Single Ferromagnetic Wires And Spheres.”, IEEE Trans Magn 18:817–21., (1982). CR - [30] Khersones L, Krutiy V V, Davidenko VP. “Estimation of magnetic characteristics of the balls in working zones of the separators.”, Mining Journal 56–9., (1970). CR - [31] Shvartsman VL, Suplin VZ. “Field distortion by ferromagnetic particles.”, Magnetohydrodynamics 2:39–44., (1970). UR - https://doi.org/10.2339/politeknik.1808952 L1 - https://dergipark.org.tr/tr/download/article-file/5354003 ER -