TY - JOUR T1 - The Role of Financial Markets in Predicting BIST Sustainability Index Performance: New Evidence from Hybrid Machine Learning Models TT - BİST Sürdürülebilirlik Endeksi Performansının Tahmininde Finans Piyasalarının Rolü: Hibrid Makine Öğrenmesi Modellerinden Yeni Kanıtlar AU - Çolak, Zeynep PY - 2025 DA - October Y2 - 2025 DO - 10.30784/epfad.1813752 JF - Ekonomi Politika ve Finans Araştırmaları Dergisi JO - EPF Journal PB - Ekonomi ve Finansal Araştırmalar Derneği WT - DergiPark SN - 2587-151X SP - 383 EP - 402 VL - 10 IS - Özel Sayı LA - en AB - The increasing importance of sustainable finance makes it critical to understand and accurately model the performance dynamics of investment instruments in this area. This study aims to forecast the return of the BIST Sustainability Index using financial market indicators and to explain the underlying dynamics of this forecasting process, thereby understanding the complex structures of financial markets, investor behavior, and information flow. In this study, eleven different machine learning models were compared with a validation strategy suitable for the time series structure, and the most successful candidates were subjected to hyperparameter optimization. In order to overcome the limitations of single models, a sequential hybrid model based on the Residual Fitting approach was developed. According to the results of the study, the two-stage hybrid model, which uses the Voting Regressor as the main predictor and Random Forest as the error corrector, provided the lowest error (RMSE) and the highest R² value. The findings indicate that the BIST_100 index is the most critical determinant, while risk aversion indicators such as Gold, USD, and VIX have a negative effect. This evidence has far-reaching implications for understanding the dynamic relationships between the Sustainability Index and macroeconomic variables. KW - Sustainable Finance KW - BIST Sustainability Index KW - Machine Learning KW - SHAP KW - Explainable Artificial Intelligence N2 - Sürdürülebilir finansmanın artan önemi, bu alandaki yatırım araçlarının performans dinamiklerini anlamayı ve doğru bir şekilde modellemeyi kritik hale getirmektedir. Bu çalışma, finansal piyasa göstergelerini kullanarak BIST Sürdürülebilirlik Endeksi'nin getirisini tahmin etmeyi ve bu tahmin sürecinin altında yatan dinamikleri açıklamayı, böylece finansal piyasaların karmaşık yapılarını, yatırımcı davranışlarını ve bilgi akışını anlamayı amaçlamaktadır. Bu çalışmada, zaman serisi yapısına uygun bir doğrulama stratejisi ile on bir farklı makine öğrenimi modeli karşılaştırılmış ve en başarılı adaylar hiperparametre optimizasyonuna tabi tutulmuştur. Tekil modellerin sınırlamalarını aşmak için, Residual Fitting yaklaşımına dayalı sıralı bir hibrit model geliştirilmiştir. Çalışmanın sonuçlarına göre, ana tahminci olarak Voting Reressor ve hata düzeltici olarak Rastgele Orman kullanan iki aşamalı hibrit model, en düşük hata (RMSE) ve en yüksek R² değerini sağlamıştır. Bulgular, BIST_100 endeksinin en kritik belirleyici olduğunu, Altın, USD ve VIX gibi riskten kaçınma göstergelerinin ise olumsuz bir etkiye sahip olduğunu göstermektedir. CR - AlGhazali, A., Mensi, W., Morley, B. and Kang, S.H. (2025). Connectedness and hedging strategies between European sustainability and conventional stock markets. Journal of Sustainable Finance & Investment, Advance online publication. 1-30. https://doi.org/10.1080/20430795.2025.2520523 CR - Aslanargun, A., Mammadov, M., Yazici, B. and Yolacan, S. (2007). Comparison of ARIMA, neural networks and hybrid models in time series: Tourist arrival forecasting. Journal of Statistical Computation and Simulation, 77(1), 29-53. https://doi.org/10.1080/10629360600564874 CR - Başkaya, H. (2025). BİST sürdürülebilirlik endeksi ile diğer finansal endeksler arasındaki ilişkinin ve nedenselliğin analizi. Fiscaoeconomia, 9(2), 1003-1021. Retrieved from https://www.ceeol.com/ CR - Bergmeir, C. and Benítez, J.M. (2012). On the use of cross-validation for time series prediction. Information Sciences, 191, 192-213. https://doi.org/10.1016/j.ins.2011.12.028 CR - Bhattacharya, A. (2022). Applied machine learning explainability techniques. Birmingham: Packt Publishing. CR - Bhutta, U.S., Tariq, A., Farrukh, M., Raza, A. and Iqbal, M.K. (2022). Green bonds for sustainable development: Review of literature on development and impact of green bonds. Technological Forecasting and Social Change, 175, 121378. https://doi.org/10.1016/j.techfore.2021.121378 CR - Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32. https://doi.org/10.1023/A:1010933404324 CR - Broadstock, D.C. and Cheng, L.T. (2019). Time-varying relation between black and green bond price benchmarks: Macroeconomic determinants for the first decade. Finance Research Letters, 29, 17-22. https://doi.org/10.1016/j.frl.2019.02.006 CR - Chen, S., Song, Y. and Gao, P. (2023). Environmental, social, and governance (ESG) performance and financial outcomes: Analyzing the impact of ESG on financial performance. Journal of Environmental Management, 345, 118829. https://doi.org/10.1016/j.jenvman.2023.118829 CR - Çankal, A. and Ever, D. (2025). The effects of renewable energy consumption on financial performance: An explainable artificial ıntelligence (XAI)-based research on the BIST sustainability index. International Journal of Energy Economics and Policy, 15(4), 204-213. https://doi.org /10.32479/ijeep.19602 CR - Dietterich, T.G. (2000). Ensemble methods in machine learning. In J. Kittler and F. Roli (Eds.), Multiple classifier systems, first ınternational workshop, MCS 2000 (pp. 1–15). https://doi.org/10.1007/3-540-45014-9_1 CR - Drimbetas, E., Sariannidis, N., Giannarakis, G. and Litinas, N. (2010). The effects of macroeconomic factor on the sustainability, large-cap and mid-cap Dow Jones indexes. International Journal of Business Policy and Economics, 3, 21-36. Retrieved from https://serialsjournals.com/ CR - Ehlers, T. and Packer, F. (2017). Green bond finance and certification. BIS Quarterly Review, September, 89-104. Retrieved from https://www.bis.org/ CR - Friede, G., Busch, T. and Bassen, A. (2015). ESG and financial performance: Aggregated evidence from more than 2000 empirical studies. Journal of Sustainable Finance & Investment, 5(4), 210-233. https://doi.org/10.1080/20430795.2015.1118917 CR - Friedman, J.H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232. Retrieved from https://www.jstor.org/ CR - Hastie, T., Tibshirani, R. and Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). Berlin: Springer. CR - Haykin, S. (2009). Neural networks and learning machines, 3/E. Bangalore: Pearson Education CR - Heaton, J.B., Polson, N.G. and Witte, J.H. (2016). Deep learning in finance. arXiv preprint arXiv:1602.06561. https://doi.org/10.48550/arXiv.1602.06561 CR - Kaur, J. and Chaudhary, R. (2022). Relationship between macroeconomic variables and sustainable stock market index: An empirical analysis. Journal of Sustainable Finance & Investment, 1-18. https://doi.org/10.1080/20430795.2022.2073957 CR - Kavas, Ü.Y.B. (2025). Finansal enstrümanların BİST sürdürülebilirlik endeksi üzerindeki dinamik etkilerinin TVP-VAR modeliyle araştırılması. Mali Cözüm Dergisi, 35, 1201-1225. Retrieved from https://ismmmo.org.tr/Yayinlar/Mali-Cozum-Dergisi--1 CR - Kaya, M. (2023). BİST sürdürülebilirlik endeksi ile fosil yakıt fiyatları arasındaki ilişkinin analizi. Abant Sosyal Bilimler Dergisi, 23(3), 1475-1495. https://doi.org/10.11616/asbi.1327883 CR - Kocamiş, T.U. and Yildirim, G. (2016). Sustainability reporting in Turkey: Analysis of companies in the BIST sustainability index. European Journal of Economics and Business Studies, 2(3), 41-51. Retrieved from https://revistia.com/ejes CR - LeCun, Y., Bengio, Y. and Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-444. https://doi.org/10.1038/nature14539 CR - Lundberg, S.M. and Lee, S.I. (2017). A unified approach to interpreting model predictions. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and R. Garnett (Eds.), Advances in neural information processing systems (pp. 1-10). California: Curran Associates. CR - Morales, L., Soler-Domínguez, A. and Hanly, J. (2019). The power of ethical investment in the context of political uncertainty. Journal of Applied Economics, 22(1), 554-580. https://doi.org/10.1080/15140326.2019.1683264 CR - Özçim, H. (2022). Bist sürdürülebilirlik endeksi ve makroekonomik veriler arasindaki ilişkinin GARCH modelleri çerçevesinde incelenmesi. Pamukkale Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, 50, 115-126. https://doi.org/10.30794/pausbed.1015216 CR - Quinn, B. (2023). Explaining AI in finance: Past, present, prospects. New York: Cornell University. CR - Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386. https://doi.org/10.1037/h0042519 CR - Rumelhart, D.E., Hinton, G.E. and Williams, R.J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536. Retrieved from https://www.nature.com/ CR - Seow, R.Y.C. (2025). Transforming ESG analytics with machine learning: A systematic literature review using TCCM framework. Corporate Social Responsibility and Environmental Management, Advance online publication. https://doi.org/10.1002/csr.70089 CR - Shaikh, I. (2022). On the relationship between policy uncertainty and sustainable investing. Journal of Modelling in Management, 17(4), 1504-1523. https://doi.org/10.1108/JM2-12-2020-0320 CR - Shapley, L.S. (1953). A value for n-person games. In H.W. Kuhn and A.W. Tucker (Eds.), Contributions to the theory of games II (307–317). New Jersey: Princeton University Press. CR - Sharma, P., Shrivastava, A.K., Rohatgi, S. and Mishra, B.B. (2023). Impact of macroeconomic variables on sustainability indices using ARDL model. Journal of Sustainable Finance & Investment, 13(1), 572-588. https://doi.org/10.1080/20430795.2021.1972679 CR - Siddique, M.A. and Karim, S. (2025). Can ESG disclosure predict carbon risk? Evidence from machine and deep learning models. Finance Research Letters, 83, 107672. https://doi.org/10.1016/j.frl.2025.107672 CR - Şahin, S. (2024). Finans Sektöründe yapay zeka, makine öğrenmesi ve büyük veri kullanımı: Fırsatlar, zorluklar ve politika yapıcılar için çıkarımlar. Finans Ekonomi ve Sosyal Araştırmalar Dergisi, 9(4), 364-381. https://doi.org/10.29106/fesa.1542860 CR - Tibshirani, R. (1996). Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B (Methodological), 58(1), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x CR - Tsay, R.S. (2010). Analysis of financial time series (3rd ed.). USA: Wiley. CR - Vardari, L., Gashi, R. and Aahmeti, H.G. (2020). The impact of corporate sustainability index on BIST sustainability index. European Journal of Sustainable Development, 9(2), 375-375. https://doi.org/10.14207/ejsd.2020.v9n2p375 CR - Wolpert, D.H. (1992). Stacked generalization. Neural Networks, 5(2), 241-259. https://doi.org/10.1016/S0893-6080(05)80023-1 CR - Zhang, J. and Zhao, Z. (2026). Corporate ESG rating prediction based on XGBoost-SHAP interpretable machine learning model. Expert Systems with Applications, 295, 128809. https://doi.org/10.1016/j.eswa.2025.128809 UR - https://doi.org/10.30784/epfad.1813752 L1 - https://dergipark.org.tr/tr/download/article-file/5375734 ER -