TY - JOUR T1 - Improvement of water flux, treatment efficiency, and fouling resistance of polyethersulfone/cellulose acetate blend ultrafiltration membranes using nanomaterials derived from renewable resources TT - Yenilenebilir kaynaklardan elde edilen nanomalzemeler kullanılarak polietersülfon/selüloz asetat karışımı ultrafiltrasyon membranlarının su akısının, arıtma veriminin ve kirlenme direncinin iyileştirilmesi AU - Acarer Arat, Seren PY - 2025 DA - October Y2 - 2025 DO - 10.65206/pajes.70729 JF - Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi PB - Pamukkale Üniversitesi WT - DergiPark SN - 2147-5881 VL - 0 IS - 0 LA - en AB - Polymeric flat sheet membranes are extensively applied in both large- and small-scale water and wastewater treatment processes. A straightforward and effective strategy to enhance the performance of polymer-based flat sheet membranes, particularly their water flux and treatment efficiency, is the integration of nanomaterials into the membrane structure. In this research, cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) were incorporated into polyethersulfone (PES)/cellulose acetate (CA) blend membranes, which were produced using the non-solvent induced phase separation technique. The prepared membranes underwent comprehensive characterization, and their water flux and turbidity removal performance were subsequently evaluated using the classical filtration technique. Morphological properties, including porosity, mean pore size, and pore size distribution, were analyzed from SEM images processed in MATLAB. Antifouling behavior (Rt, Rir, Rr, FRR, and FDR) and resistance-related (RT, RM, RIR, and RR) parameters were evaluated. Incorporation of CNC and CNF improved the hydrophilicity and porosity of the PES/CA membranes while simultaneously decreasing average pore size and surface roughness. Furthermore, both reinforcements significantly increased the pure water flux of the membranes, with observed enhancements of 33.49% for CNC and 37.56% for CNF, reaching a maximum flux of 365.12 L/m²·h. Turbidity removal performance was also positively influenced by the presence of nanomaterials, with the PES/CA/CNF membrane achieving the highest removal efficiency of 98.24%. Overall, CNF was superior to CNC in enhancing the membrane’s porosity, hydrophilicity, surface smoothness, water flux, turbidity removal, and fouling resistance. The estimated fabrication cost for PES/CA-based membranes ranged from 1773 to 2948 TRY. KW - membrane KW - cellulose nanocrystal KW - cellulose nanofibril KW - characterization KW - ultrafiltration KW - water treatment N2 - Polimerik düz levha membranlar, hem büyük hem de küçük ölçekli su ve atık su arıtım proseslerinde yaygın olarak kullanılmaktadır. Polimer bazlı düz levha membranların performansını, özellikle su akısı ve arıtım verimliliğini artırmanın basit ve etkili bir yolu, nanomalzemelerin membran yapısına entegre edilmesidir. Bu çalışmada, selüloz nanokristaller (CNC) ve selüloz nanofibriller (CNF), çözücü olmayan tarafından indüklenen faz ayırma yöntemi kullanılarak üretilen polietersülfon (PES)/selüloz asetat (CA) karışım membranlara dahil edilmiştir. Hazırlanan membranlar kapsamlı karakterizasyondan geçirilmiş ve su akısı ile bulanıklık giderme performansları klasik filtrasyon tekniği kullanılarak değerlendirilmiştir. Porozite, ortalama gözenek boyutu ve gözenek boyutu dağılımı gibi morfolojik özellikler, MATLAB ile işlenen SEM görüntülerinden analiz edilmiştir. Antifouling davranışı (Rt, Rir, Rr, FRR ve FDR) ve dirençle ilgili parametreler (RT, RM, RIR ve RR) değerlendirilmiştir. CNC ve CNF’nin eklenmesi, PES/CA membranlarının hidrofiliğini ve porozitesini artırırken, ortalama gözenek boyutu ve yüzey pürüzlülüğünü azaltmıştır. Ayrıca, her iki katkı da membranların saf su akısını önemli ölçüde artırmış, CNC için %33,49 ve CNF için %37,56 artış gözlemlenmiş ve maksimum akış 365,12 L/m²·h’ye ulaşmıştır. Bulanıklık giderme performansı da nanomalzemelerin varlığından olumlu etkilenmiş olup, PES/CA/CNF membranı en yüksek giderim verimi olan %98,24’e ulaşmıştır. Genel olarak, CNF, membranın porozitesini, hidrofiliğini, yüzey pürüzsüzlüğünü, su akısını, bulanıklık giderimini ve kirlenmeye karşı direncini artırmada CNC’ye kıyasla daha üstün performans göstermiştir. PES/CA bazlı membranların tahmini üretim maliyeti 1773 ile 2948 TRY arasında değişim göstermiştir. CR - [1] United Nations. “The 17 Goals” https://sdgs.un.org/goals Accessed on 29 May 2025 CR - [2] Vajitha G, Jashrapuria K, Gandhi TP, Lipika P, Singh SP, Maliyekkal SM. “Scalable and cost-effective ultra-dispersible graphene oxide blended ultrafiltration mixed matrix membrane: Assessment of mechanical, water flux, and anti-biofouling properties”. Process Safety and Environmental Protection, 194, 35–46, 2025. CR - [3] Li M, Luo J, Lu J, Shang W, Mu J, Sun F, et al. “A novel nanofibrous PAN ultrafiltration membrane embedded with ZIF-8 nanoparticles for effective removal of Congo red, Pb(II), and Cu(II) in industrial wastewater treatment”. Chemosphere, 304, 135285, 2022. CR - [4] Manni A, Achiou B, Karim A, Harrati A, Sadik C, Ouammou M, et al. “New low-cost ceramic microfiltration membrane made from natural magnesite for industrial wastewater treatment”. Journal of Environmental Chemical Engineering, 8(4), 103906, 2020. CR - [5] Genç N, Durna E. “Determination of optimal method for management of leachate membrane concentrate by analytical hierarchy process”. Pamukkale University Journal of Engineering Sciences, 26(3), 488–495, 2020. CR - [6] Kamińska G, Marszałek A. “Advanced treatment of real grey water by SBR followed by ultrafiltration—Performance and fouling behavior”. Water, 12(1), 154, 2020. CR - [7] Ding H, Zhang J, He H, Zhu Y, Dionysiou DD, Liu Z, et al. “Do membrane filtration systems in drinking water treatment plants release nano/microplastics?”. Science of the Total Environment, 755, 142658, 2021. CR - [8] Onaç C, Kaya A. “The removal of Cr(VI) through graphene oxide based polymer inclusion membrane”. Pamukkale University Journal of Engineering Sciences, 24(7), 1343–1347, 2018. CR - [9] Acarer S. “Effect of different solvents, pore-forming agent and solubility parameter differences on the properties of PES ultrafiltration membrane”. Sakarya University Journal of Science, 26(6), 1196–1208, 2022. CR - [10] Maximous N, Nakhla G, Wan W, Wong K. “Preparation, characterization and performance of Al2O3/PES membrane for wastewater filtration”. Journal of Membrane Science, 341(1–2), 67–75, 2009. CR - [11] Kayanja O, Hassan MA, Hassanin A, Ohashi H, Khalil ASG. “Effect of phase disparity of MoS2 nanosheets on the performance of PES membranes for dual industrial oil-in-water emulsion separation and dyes adsorption”. Process Safety and Environmental Protection, 171, 55–70, 2023. CR - [12] Aguilar-Sanchez A, Jalvo B, Mautner A, Nameer S, Pöhler T, Tammelin T, et al. “Waterborne nanocellulose coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes”. Journal of Membrane Science, 620, 118842, 2021. CR - [13] De Guzman MR, Andra CKA, Ang MBMY, Dizon GVC, Caparanga AR, Huang S-H, et al. “Increased performance and antifouling of mixed-matrix membranes of cellulose acetate with hydrophilic nanoparticles of polydopamine-sulfobetaine methacrylate for oil-water separation”. Journal of Membrane Science, 620, 118881, 2021. CR - [14] Abdellah Ali SF, William LA, Fadl EA. “Cellulose acetate, cellulose acetate propionate and cellulose acetate butyrate membranes for water desalination applications”. Cellulose, 27(16), 9525–9543, 2020. CR - [15] Ou R, Wang Y, Zhang H, Wang H, Xu T. “Preparation of high-flux ultrafiltration membranes by blending strongly charged polymer”. Journal of Applied Polymer Science, 134(10), 2017. CR - [16] Jiang SH, Wu J, Zhou HZ, Jiang CW, Wang J. “The research of hydrophilic modification of PVC/PES blended membrane by the additive of CA”. Advanced Materials Research, 1052, 8–13, 2014. CR - [17] Liu S, Xu Z, Liu M, Wei Y, Guo F. “Preparation and characterization of PES/CA microporous membranes via reverse thermally induced phase separation process”. Polymer Engineering & Science, 58(2), 180–191, 2018. CR - [18] Kurniawan TW, Sulistyarti H, Rumhayati B, Sabarudin A. “Cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) as adsorbents of heavy metal ions”. Journal of Chemistry, 2023, 1–36, 2023. CR - [19] Wang X, Chang CH, Jiang J, Liu Q, Liao Y, Lu J, et al. “The crystallinity and aspect ratio of cellulose nanomaterials determine their pro-inflammatory and immune adjuvant effects in vitro and in vivo”. Small, 15(42), 2019. CR - [20] Daraei P, Ghaemi N, Sadeghi Ghari H. “An ultra-antifouling polyethersulfone membrane embedded with cellulose nanocrystals for improved dye and salt removal from water”. Cellulose, 24(2), 915–929, 2017. CR - [21] Qu P, Tang H, Gao Y, Zhang L, Wang S. “Polyethersulfone composite membrane blended with cellulose fibrils”. BioResources, 5(4), 2323–2336, 2010. CR - [22] Bai L, Wu H, Ding J, Ding A, Zhang X, Ren N, et al. “Cellulose nanocrystal-blended polyethersulfone membranes for enhanced removal of natural organic matter and alleviation of membrane fouling”. Chemical Engineering Journal, 382, 122919, 2020. CR - [23] Boruah P, Gupta R, Katiyar V. “Fabrication of cellulose nanocrystal (CNC) from waste paper for developing antifouling and high-performance polyvinylidene fluoride (PVDF) membrane for water purification”. Carbohydrate Polymer Technologies and Applications, 5, 100309, 2023. CR - [24] Gharagheizi F. “New procedure to calculate the Hansen solubility parameters of polymers”. Journal of Applied Polymer Science, 103(1), 31–36, 2007. CR - [25] Huang J, Tang H, Huang X, Feng Z, Su P, Li W. “Hansen solubility parameters-guided mixed matrix membranes with linker-exchanged metal-organic framework fillers showing enhanced gas separation performance”. Journal of Membrane Science, 668, 121238, 2023. CR - [26] Pang J, Pine AWR, Sulemana A. “Using natural language processing (NLP)-inspired molecular embedding approach to predict Hansen solubility parameters”. Digital Discovery, 3(1), 145–154, 2024. CR - [27] AlQasas N, Johnson D. “Combined effects of surface roughness, solubility parameters, and hydrophilicity on biofouling of reverse osmosis membranes”. Membranes, 14(11), 235, 2024. CR - [28] Hansen CM. “Hansen solubility parameters: A user’s handbook”. Second Edition, Boca Raton: CRC Press Taylor & Francis Group, 2007. CR - [29] Meringolo C, Poerio T, Fontananova E, Mastropietro TF, Nicoletta FP, De Filpo G, et al. “Exploiting fluoropolymers immiscibility to tune surface properties and mass transfer in blend membranes for membrane contactor applications”. ACS Applied Polymer Materials, 1(3), 326–334, 2019. CR - [30] Acarer-Arat S, Tüfekci M, Pir İ, Tüfekci N. “Nanocellulose in polyvinylidene fluoride (PVDF) membranes: Assessing reinforcement impact and modelling techniques”. Journal of Environmental Chemical Engineering, 12(6), 114749, 2024. CR - [31] Rabbani A, Salehi S. “Dynamic modeling of the formation damage and mud cake deposition using filtration theories coupled with SEM image processing”. Journal of Natural Gas Science and Engineering, 42, 157–168, 2017. CR - [32] Ezeakacha CP, Rabbani A, Salehi S, Ghalambor A. “Integrated image processing and computational techniques to characterize formation damage”. SPE International Conference and Exhibition on Formation Damage Control, Lafayette, Louisiana, USA, 2018. CR - [33] Guillen GR, Ramon GZ, Kavehpour HP, Kaner RB, Hoek EMV. “Direct microscopic observation of membrane formation by nonsolvent induced phase separation”. Journal of Membrane Science, 431, 212–220, 2013. CR - [34] Athira VB, Mohanty S, Nayak SK. “Preparation and characterization of porous polyethersulfone (PES) membranes with improved biocompatibility by blending sulfonated polyethersulfone (SPES) and cellulose acetate (CA) – A comparative study”. Materials Today Communications, 25, 101544, 2020. CR - [35] Batool M, Shafeeq A, Haider B, Ahmad NM. “TiO2 nanoparticle filler-based mixed-matrix PES/CA nanofiltration membranes for enhanced desalination”. Membranes, 11, 433, 2021. CR - [36] Kusworo TD, Widayat W, Utomo DP. “Fabrication and characterization of nano hybrid cellulose acetate-nanoTiO2/crosslinked polyvinyl alcohol coated membrane for crude clove oil purification”. Periodica Polytechnica Chemical Engineering, 64(3), 304–319, 2020. CR - [37] Drikvand HN, Golgoli M, Zargar M, Ulbricht M, Nejati S, Mansourpanah Y. “Thermo-responsive hydrophilic support for polyamide thin-film composite membranes with competitive nanofiltration performance”. Polymers, 14(16), 3376, 2022. CR - [38] Gan Q, Wu C, Long L, Peng LE, Yang Z, Guo H, et al. “Does surface roughness necessarily increase the fouling propensity of polyamide reverse osmosis membranes by humic acid?”. Environmental Science & Technology, 57(6), 2548–2556, 2023. CR - [39] Bildyukevich AV, Plisko TV, Lipnizki F, Pratsenko SA. “Correlation between membrane surface properties, polymer nature and fouling in skim milk ultrafiltration”. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 605, 125387, 2020. CR - [40] Hobbs C, Taylor J, Hong S. “Effect of surface roughness on fouling of RO and NF membranes during filtration of a high organic surficial groundwater”. Journal of Water Supply: Research and Technology-Aqua, 55(7–8), 559–570, 2006. CR - [41] Wu Z, Ji X, He Q, Gu H, Zhang W, Deng Z. “Nanocelluloses fine-tuned polyvinylidene fluoride (PVDF) membrane for enhanced separation and antifouling”. Carbohydrate Polymers, 323, 121383, 2024. CR - [42] Tshabalala TG, Nxumalo EN, Mamba BB, Mhlanga SD. “Synthesis of robust flexible polyethersulfone ultrafiltration membranes supported on non-woven fabrics for separation of NOM from water”. Water SA, 42(4), 621, 2016. CR - [43] Krishnamoorthy R, Sagadevan V. “Polyethylene glycol and iron oxide nanoparticles blended polyethersulfone ultrafiltration membrane for enhanced performance in dye removal studies”. E-Polymers, 15(3), 151–159, 2015. CR - [44] Ghasemi H, Abu-Zahra N, Baig U, Waheed A, Aljundi IH. “Surface-engineered polyethersulfone membranes using thermo-responsive poly(N-isopropyl acrylamide) with antibiofouling properties for water treatment applications”. Journal of Polymers and the Environment, 32(6), 2589–2605, 2024. CR - [45] Nguyen HT, Bui HM. “Bandgap tuning of TiO2 by Cu nanoparticles applied in photocatalytic antifouling-coated PES membranes through PAA-plasma grafted adhesive layer”. Water Science & Technology, 87(9), 2390–2405, 2023. CR - [46] Selim H, Elshypany R, El-Bahy SM, Mubarak MF, Taha EO. “Fabrication of electrospun nylon6.12/chitosan @PES nanofibrous UF membrane towards dyes rejection from synthetic wastewater”. Polymer Bulletin, 80, 977–999, 2023. CR - [47] Mohamat R, Bakar SA, Muqoyyanah, Mohamed A, Kamal SNEAM, Othman MHD, et al. “Effect of triple-tail surfactant on the morphological properties of polyethersulfone-based membrane and its antifouling ability”. Journal of Materials Science, 57, 16333–16351, 2022. CR - [48] Abdel-Naby AS, Al-Ghamdi AA. “Chemical modification of cellulose acetate by diallylamine”. International Journal of Current Microbiology and Applied Sciences, 3(6), 10–24, 2014. CR - [49] Zhang D, Karkooti A, Liu L, Sadrzadeh M, Thundat T, Liu Y, et al. “Fabrication of antifouling and antibacterial polyethersulfone (PES)/cellulose nanocrystals (CNC) nanocomposite membranes”. Journal of Membrane Science, 549, 350–356, 2018. CR - [50] Lv J, Zhang G, Zhang H, Zhao C, Yang F. “Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal”. Applied Surface Science, 440, 1091–1100, 2018. CR - [51] Acarer S. “A review of microplastic removal from water and wastewater by membrane technologies”. Water Science & Technology, 88(1), 199–219, 2023. CR - [52] Alasfar RH, Kochkodan V, Ahzi S, Barth N, Koç M. “Preparation and characterization of polysulfone membranes reinforced with cellulose nanofibers”. Polymers, 14, 3317, 2022. UR - https://doi.org/10.65206/pajes.70729 L1 - https://dergipark.org.tr/tr/download/article-file/5377202 ER -