TY - JOUR T1 - A COMPARSION AMONG HOMOTOPY PERTURBATION METHOD AND THE DECOMPOSITION METHOD WITH THE VARIATIONAL ITERATION METHOD FOR HELMHOLTZ EQUATION TT - HELMHOLTZ DENKLEMİ İÇİN HOMOTOPY PERTÜRBATİON, DECOMPOSİTİON METHOD VE VARİATİONAL İTERASYON YÖNTEMLERİ ARASINDA BİR KARŞILAŞTIRMA AU - Bulut, Hasan PY - 2008 DA - February DO - 10.12739/10.12739 JF - Physical Sciences PB - E-Journal of New World Sciences Academy WT - DergiPark SN - 1308-7304 SP - 93 EP - 106 VL - 3 IS - 1 LA - tr AB - In this article, we implement a relatively new numerical technique and we present a comparative study among Homotopy perturbation method and Adomian decomposition method ,the variational iterational method.These methods in applied mathematics can be an effective procedure to obtain for approximate solutions.The study outlines the significant features of the three methods.The analysis will be illustrated by investigating the homogeneous Helmholtz equation model problem. This paper is particularly concerned a numerical comparison with the Adomian decomposition and Homotopy perturbation method ,the variational iterational method The numerical results demonstrate that the new methods are quite accurate and readily implemented. KW - Helmholtz Equation KW - The Decomposition Method KW - Homo KW - KW - KW - KW - KW - N2 - Bu makalede, nispeten yeni bir nümerik teknik uyguladık ve Homotopy Perturbation Methodu, Adomian Decomposition Method, ve variational iteration metodu arasında mukayeseli bir çalışma sunduk. Uygulamalı matematikteki bu metodlar yaklaşık çözümler elde etmek için etkili bir yöntem olabilir. Çalışma üç metodun önemli özelliklerini ana hatları ile göstermektedir. Analizler, Helmholtz denkleminin model problemi incelenerek örneklendirilecektir. Bu makale özellikle Homotopy Perturbation Methodu, Adomian Decomposition Method, ve variational iteration metodunun nümerik bir karşılaştırması ile ilgilidir. Nümerik sonuçlar yeni metodularin oldukça doğru ve hızlı uygulanabilir olduğunu göstermektedir. UR - https://doi.org/10.12739/10.12739 L1 - https://dergipark.org.tr/tr/download/article-file/187010 ER -