TY - JOUR TT - KENDİLİĞİNDEN YERLEŞEN VE NORMAL BETONLU BETONARME KİRİŞLERİN BURULMA DAVRANIŞININ DENEYSEL İNCELENMESİ AU - Aydın, Abdulkadir Cuneyt AU - Bayrak, Barış PY - 2016 DA - August JF - Sinop Üniversitesi Fen Bilimleri Dergisi JO - Sinop Uni J Nat Sci PB - Sinop Üniversitesi WT - DergiPark SN - 2536-4383 SP - 23 EP - 32 VL - 1 IS - 1 KW - burulma momenti KW - kendiliğinden yerleşen beton KW - standartlar N2 - Bu çalışma kapsamında betonarme kiriş elemanlardabeton sınıfı, beton tipi ve etriye oranının burulma davranışı üzerindeki etkisiincelendi. Kiriş numunelerinin on iki âdeti geleneksel betonla sekiz âdeti isekendiliğinden yerleşen betonla üretildi. Beton sınıfı 20 MPa ile 40 MPa; betontipi geleneksel beton ile kendiliğinden yerleşen beton ve etriye aralığı olarakda 80 mm ile 100 mm bu çalışmanın ana parametreleri seçildi. Kirişnumunelerinin boyutları 250x300x1500 mm, boyuna donatı için 16 mm etriye için 8mm donatı tasarlandı ve bu parametreler bütün numunelerde sabit tutuldu. Kirişnumuneleri hazırlandıktan 28 gün sonra burulma momenti deneyine tabi tutuldu.Burulma momentine tabi tutulan kirişlerin burulma momenti kapasiteleri ve dönmeaçıları incelendi. Normal ve kendiliğinden yerleşen beton numunelerinin burulmamomenti kapasiteleri karşılaştırıldı. Aynı parametrelere sahip kendiliğindenyerleşen beton numunelerinin daha yüksek burulma momenti kapasitelerineulaştığı deneysel olarak gözlemlendi. Benzer şekilde kendiliğinden yerleşenbeton numunelerinin dönme açılarının normal beton numunelerinin dönmeaçılarından daha düşük olduğu belirlendi. Deneysel olarak ölçülen burulmamomenti değerleri Amerikan Standardı, Avrupa Standardı, Avustralya Standardı,İngiliz Standardı ve Türk Standardına göre hesaplanan teorik burulma momentideğerleri ile karşılaştırıldı. Deneysel sonuçlara en yakın değerler AvustralyaStandardında elde edildi.  CR - Kamiński M, Pawlak W, 2011. Load capacity and stiffness of angular cross section reinforced concrete beams under torsion. Archives of Civil and Mechanical Engineering, 11(4): 885-903. CR - [2] Doğangün A, 2010. Betonarme Yapıların Hesap ve Tasarımı. 6.Baskı İstanbul Birsen Yayınevi CR - [3] Committee, A., A.C. Institute, and I.O.f. Standardization. Building code requirements for structural concrete (ACI 318-08) and commentary. 2008. American Concrete Institute. CR - [4] EN, B., 1-2: 2004 Eurocode 2: Design of concrete structures-Part 1-2: General rules-Structural fire design. European Standards, London, 2004. CR - [5] AS, A.S., Concrete structures. AS3600-2001. Sydney (Australia): Standards Australia, 2001. CR - [6] Rowe, R.E., Handbook to British Standard BS 8110: 1985: Structural Use of Concrete1987: Palladian Publications. CR - [7] TS500, TS500 Requirements for design and construction of reinforced concrete structures, 2000, Turkish Standards Institute Ankara,, Turkey. CR - [8] Cattaneo S, Mola F, 2011. Assessing the quality control of self-consolidating concrete properties. Journal of Construction Engineering and Management, 138(2): 197-205. CR - [9] Okamura H, Ouchi M, 1998. Self‐compacting high performance concrete. Progress in structural Engineering and Materials, 1(4):378-383. CR - [10] Aydin A.C.,2007. Self compactability of high volume hybrid fiber reinforced concrete. Construction and Building Materials, 21(6): 1149-1154. CR - [11] Pineaud A., et al.,2016. Mechanical properties of high performance self-compacting concretes at room and high temperature. Construction and Building Materials,112: 747-755. CR - [12] Verma N, Misra A.K, 2015. Bond characteristics of reinforced TMT bars in Self Compacting Concrete and Normal Cement Concrete. Alexandria Engineering Journal,54(4):1155-1159. CR - [13] Nehdi M, Pardhan M, Koshowaki S, 2004. Durability of self-consolidating concrete incorporating high-volume replacement composite cements. Cement and concrete research, 34(11): 2103-2112. CR - [14] Okrajnov-Bajić, R, Vasović D, 2009. Self-compacting concrete and its application in contemporary architectural practice. Spatium,(20):28-34. CR - [15] Sadek D.M, El-Attar M.M,Ali H.A,2016. Reusing of marble and granite powders in self-compacting concrete for sustainable development. Journal of Cleaner Production, (121): 19-32. CR - [16] Deeb R,2013. Flow of self-compacting concrete, Cardiff University. CR - [17] Sabet F.A, Libre N.A, Shekarchi M,2013. Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash. Construction and Building Materials,44:175-184. CR - [18] EFNARC, S., Guidelines for self-compacting concrete. EFNARC Publication, London, UK, 2002: p. 1-32. CR - [19] Csikós Á. and Hegedûs I, 1998Torsion of reinforced concrete beams, Hungary, Technical University of Budapest, Department of Reinforced Concrete Structures H-1521 Budapest, Hungary. CR - [20] Alhussainy F., et al.,2016. Direct tensile testing of Self-Compacting Concrete. Construction and Building Materials, 112:903-906. CR - [21] Gesoglu M., et al., 2015. Failure characteristics of self-compacting concretes made with recycled aggregates. Construction and Building Materials, 98:334-344. CR - [22] Kurt M., et al.,2016. The effect of pumice powder on the self-compactability of pumice aggregate lightweight concrete. Construction and Building Materials,103: 36-46. CR - [23] Behera G.C., Rao T.G, Rao C,2016. Torsional behaviour of reinforced concrete beams with ferrocement U-jacketing—Experimental study. Case Studies in Construction Materials,4:15-31. CR - [24] Bernardo L, Lopes S, 2013. Plastic analysis and twist capacity of high-strength concrete hollow beams under pure torsion. Engineering Structures, 49: 190-201. CR - [25] Deifalla A, Ghobarah A, 2014. Behavior and analysis of inverted T-shaped RC beams under shear and torsion. Engineering Structures, 68: 57-70. CR - [26] Lopes S, Bernardo L, 2014. Cracking and failure mode in HSC hollow beams under torsion. Construction and Building Materials, 51:163-178. UR - https://dergipark.org.tr/tr/pub/sinopfbd/issue//234961 L1 - https://dergipark.org.tr/tr/download/article-file/203809 ER -