@article{article_238748, title={Yaramaz E-Postaların Süzülmesinde, Karar Destek Makineleri, Naïve Bayes ve Bellek Tabanlı Öğrenme Yöntemlerinin Karşılaştırılması}, journal={Türkiye Bilişim Vakfı Bilgisayar Bilimleri ve Mühendisliği Dergisi}, volume={1}, year={2016}, author={Eryiğit, G. and Tantuğ, C. and Adalı, E.}, keywords={Yaramaz, E-Posta, Naïve Bayes}, abstract={Bu makalenin amacı, yaramaz (spam) epostaları, normal e-postalardan ayırma süreci için, karar destek makineleri (Support Vector Machines - SVM), bellek tabanlı öğrenme (Memory Based Learning - MBL) ve Naïve Bayes (NB) yöntemlerinin karşılaştırmalı değerlendirmesini yapmaktır. Yaramaz e-posta-ların süzülmesinde kullanılan yöntemleri karşılaştıran birçok çalışma olmasına karşın, bu çalışmaların büyük çoğunluğu, farklı veri kümeleri kullandıklarından karşılaştırılabilir nitelikte değildir. Bu çalışmada, SVM, MBL ve NB yöntemleri karşılaştırılırken, herkesin erişimine açık olan ortak bir derlem (corpus) olan LINGSPAM derlemi kullanılmıştır. MBL ve NB yöntemleri, önceki çalışmalarda bu veri kümesi üzerinde sınandığı için, önceki deneylerden elde edilen en iyi parametreler ufak değişikliklerle kullanılmıştır. Ancak SVM yönteminin en iyi sonucu vermesini sağlamak için çok sayıda deney yapılmıştır. Çalışmamızda bir e-postanın, yaramaz olarak tanınması durumunda, bu e-postaya nasıl davranılacağına ilişkin senaryo önerileri verilmiş ve gerçeklenen sınıflandırıcıların hatalı çalışması durumunda ilgili senaryolara göre ortaya çıkabilecek hataların bedeli göz önüne alınarak bu üç sınıflandırma yöntemi değerlendirilmiştir. Ortaya çıkan sonuçlarda, SVM yönteminin hata bedelinin sıfır olduğu ya da yüksek olduğu senaryolar için başarımının diğer yöntemlerden daha iyi olduğu görülmüştür. Ancak hata bedelinin çok yüksek olması durumunda ise NB yöntemi en iyi sonucu vermiştir.}, number={1}, publisher={Akademik Bilişim Vakfı}