TY - JOUR TT - DIRECTION EFFECT OF NEAR FAULT GROUND MOTIONS AU - Güneş, Necmettin AU - Ulucan, Zülfü Çınar AU - Erdoğan, Ali Sayıl PY - 2016 DA - July DO - 10.28948/ngumuh.239375 JF - Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi JO - NÖHÜ Müh. Bilim. Derg. PB - Niğde Ömer Halisdemir Üniversitesi WT - DergiPark SN - 2564-6605 SP - 21 EP - 33 VL - 2 IS - 2 KW - Yakın Fay KW - yer hareketleri KW - ileri doğrultu etkisi KW - yön etkisi N2 - The main objective of Performance Based Design is determining the structural demands for earthquake loadings. For a good estimation of structural demands, the relation between ground motion parameters and structural demands must be known. Near fault ground motions are significantly different from far field ground motions. Depending on the fault mechanism, ground motions may contain distinct pulse in velocity and permanent displacement in displacement records. These are increase the near fault ground motions damage potential. Forward directivity occurs in faults normal direction and damage potential of this ground motions are high. But for all records, psychically, it is not possible to determine the fault-normal and fault-parallel directions. In literature, to overcome this complexity the maximum velocity direction has been proposed. In this study in addition to maximum velocity direction two new directions, maximum drift spectrum intensity and maximum spectral velocity, were determined which are very effective as fault-normal direction. The efficiency of maximum velocity direction depends on ratio of pulse period to structural period. In the case of high value of this ratio, the maximum acceleration ratio is more destructive. CR - [1] STEWART, J.P., CHOU, S., BRAY, J.D., GRAVES, R.W., SOMERVILLE, P.G., and ABRAHAMSON, N.A., Ground Motion Evaluation Procedures for Performance Based Design, Pacific Earthquake Engineering Research Center, Peer Report, University of California,Berkeley, 2001. CR - [2] MAVROEIDIS, G.P., PAPAGEORGIOU , A.S., "A Mathematical Representation of Near-Fault Ground Motions", Bulletin of Seismological Society of America, 93(3), 2003. CR - [3] GÜLKAN, P., AKKAR, S., "Demand and Capacity Requirement Implication from Near-Fault Ground Motions", 5th National Conference on Earthquake Engineering, İstanbul, Turkey, 26-30, May 2003. CR - [4] GHAYAMGHAMIN, M.R., "Directional Damage Due to Near-Fault and Site Effects in the M6.4 Changureh-Ajav Eartquake of 22 June 2002", Journal of Seismology, 11, 39-57, 2007. CR - [5] SHABESTARI,K.T., YAMAZAKI,F., "Near-Fault Spatial Variation in Strong Ground Motion due to Rupture Directivity and Hanging Wall Effects from the Chi-Chi, Taiwan Earthquake", Earthquake Engineering and Structural Dynamics, 32, 2197-2219, 2003. CR - [6] ABRAHAMSON , N., Near Fault Ground Motions, University at Buffalo Earthquake Engineering Research Institute Student Chapter, Buffalo, USA, 2001. CR - [7] BRAY, D.J., "Characterization of Forward-Directivity Ground Motions in the Near-Fault Region", Soil Dynamics and Earthquake Engineering, 24,815-824, 2004. CR - [8] BOUCHON, M., BOUIN, M.P., KARABULUT, H.,TOKSÖZ, M.N., DIETRICH, M., and ROSAKIS, A.J., "How Fast is Rupture During an Earthquake? New Insights from the 1999 Turkey Earthquakes, Geophysical Research Letters, 28, 2723-2726, 2001. CR - [9] SOMERVILLE, P.G., SMITH, N.F., "Modification of Empirical Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of Rupture Directivity", Seismological Research Letters, 68, 199-222, 1997. CR - [10] IWAN,W.D., "Drift Spectrum: Measure of Demand for Earthquake Ground Motions", Journal of Structural Engineering , 397-404, 1997. CR - [11] HOUNG, C.T., CHENG, S.S., "Near-Field Characteristics and Engineering Implication of the 1999 Chi-Chi Earthquake", Earthquake Engineering and Engineering Seismology, 2 (1), 23-41, 2000. CR - [12] AKKAR, S., GÜLKAN,P., "Comparative Performance Evaluation of Displacement Based Design Procedures for Near Field Earthquakes", 12th World Earthquake Engineering Conference, Auckland, New Zealand, 2000. CR - [13] SOMERVILLE , P., "Characterizing Near Fault Ground Motion for the Design and Evaluation of Bridges, 4th National Seismic Conference & Workshop on Bridge & Highways, Portland , Oregon, USA, 2002. CR - [14] CHOPRA, A.K., and CHINTANAPAKDEE, C., Inelastic deformation ratios for design and evaluation of structures : Single degree of freedom bilinear systems, Earthquake Engineering Research Centers Report, Reports No:2003-09, University of California, Berkeley, USA, 2003. CR - [15] SOMERVILLE, P., "Characterization of Near-Fault Ground Motion", U.S.-Japan Workshop on the Effects of Near-Field Earthquake Shaking, San Francisco, California, USA, 2000. CR - [16] GÜNEŞ, N., Yakın Fay Yer Hareketleri ve Performansa Dayalı Tasarıma Uyarlanmaları, Doktora Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ, 2009. CR - [17] MOLAS, G. L., F. YAMAZAKI, "Neural Networks for Quick Earthquake Damage Estimation", Earthquake Engineering and Structural Dynamics, 24, 1995. CR - [18] CHOPRA, A.K., CHINTANAPAKDEE, C., "Comparing Response of SDF Systems to Near-Fault and FarFault Earthquake Motions in the Context of Spectral Regions", Earthquake Engineering and Structural Dynamics, 30, 2001. UR - https://doi.org/10.28948/ngumuh.239375 L1 - https://dergipark.org.tr/tr/download/article-file/207841 ER -