TY - JOUR TT - Classification of Structural MRI for Detecting Alzheimer’s Disease AU - Demirhan, Ayşe PY - 2016 DA - December DO - 10.18201/ijisae.270708 JF - International Journal of Intelligent Systems and Applications in Engineering PB - İsmail SARITAŞ WT - DergiPark SN - 2147-6799 SP - 195 EP - 198 VL - 4 IS - Special Issue-1 KW - Alzheimer’s Disease KW - neuroimaging KW - structural MRI KW - multivariate analysis KW - image classification KW - machine learning techniques N2 - Alzheimer’s Disease (AD) is a pathological form of dementia that degeneratesbrain structures. AD affects millions of elderly people over the world and thenumber of people with AD doubles every year. Detecting AD years before theeffects of disease using structural magnetic resonance imaging (MRI) of thebrain is possible. Neuroimaging features that are extracted from the structuralbrain MRI can be used to predict AD by revealing disease related patterns.Machine learning techniques can detect AD and predict conversions from mildcognitive impairment (MCI) to AD automatically and successfully by using theseneuroimaging features. In this study common structural brain measures such asvolumes and thickness of anatomical structures that are obtained from The OpenAccess Series of Imaging Studies (OASIS) and made publicly available byhttps://www.nmr.mgh.harvard.edu/lab/mripredict are analysed. State-of-the-artmachine learning techniques, namely support vector machines (SVM), k-nearestneighbour (kNN) algorithm and backpropagation neural network (BP-NN) areemployed to discriminate AD and mild AD from healthy controls. Traininghyperparameters of the classifiers are tuned using classification accuracywhich is obtained with 5-fold cross validation. Prediction performance of thetechniques are compared using accuracy, sensitivity and specificity. Results ofthe system revealed that AD can be distinguished from the healthy controlssuccessfully using multivariate morphological features and machine learningtools. According to the performed experiments SVM is the most successfulclassifier for detecting AD with classification accuracies up to 82%. CR - [1] C. R. Jack Jr., M. A. Bernstein, N. C. Fox, P. Thompson, G. Alexander, D. Harvey, B. Borowski, P. J. Britson, J. L. Whitwell, C. Ward, A. M. Dale, J. P. Felmlee, J. L. Gunter, D. L. G. Hill, R. Killiany, N. Schuff, S. Fox-Bosetti, C. Lin, C. Studholme, C. S. DeCarli, G. Krueger, H. A. Ward, G. J. Metzger, K. T. Scott, R. Mallozzi, D. Blezek, J. Levy, J. P. Debbins, A. S. Fleisher, M. Albert, R. Green, G. Bartzokis, G. Glover, J. Mugler, M. W. Weiner, “The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods,” Journal of Magnetic Resonance Imaging, vol. 27, no. 4, pp. 685-691, 2008. CR - [2] R. C. Petersen, “Mild cognitive impairment as a diagnostic entity,” Journal of Internal Medicine, vol. 256, no. 3, pp. 183-194, 2004. CR - [3] P. M. Thompson, K. M. Hayashi, G. De Zubicaray, A. L. Janke, S. E. Rose, J. Semple, D. Herman, M. S. Hong, S. S. Dittmer, D. M. Doddrell, A. W. Toga, “Dynamics of gray matter loss in Alzheimer's disease,” Journal of Neuroscience, vol. 23, no. 3, pp. 994-1005, 2003. CR - [4] A. Demirhan, T. M. Nir, A. Zavaliangos-Petropulu, C. R. Jack Jr., W. M. Weiner, M. A. Bernstein, P. M. Thompson, N. Jahanshad, “Feature selection improves the accuracy of classifying Alzheimer disease using diffusion tensor images,” in Proceedings - International Symposium on Biomedical Imaging, 2015, art. no. 7163832, pp. 126-130. CR - [5] G. B. Frisoni, N. C. Fox, C. R. Jack Jr., P. Scheltens, P. M. Thompson, “The clinical use of structural MRI in Alzheimer disease,” Nature Reviews Neurology, vol. 6, no. 2, pp. 67-77, 2010. CR - [6] M. R. Sabuncu, E. Konukoglu, “Clinical Prediction from Structural Brain MRI Scans: A Large-Scale Empirical Study,” Neuroinformatics, 13 (1), pp. 31-46, 2015. CR - [7] B. Magnin, L. Mesrob, S. Kinkingnéhun, M. Pélégrini-Issac, O. Colliot, M. Sarazin, B. Dubois, S. Lehéricy, H. Benali, “Support vector machine-based classification of Alzheimer's disease from whole-brain anatomical MRI,” Neuroradiology, vol. 51, no. 2, pp. 73-83, 2009. CR - [8] C. A. Cocosco, A. P. Zijdenbos, A. C. Evans, “A fully automatic and robust brain MRI tissue classification method,” Medical Image Analysis, vol. 7, no. 4, pp. 513-527, Dec. 2003. CR - [9] N. Amoroso, R. Errico, R. Bellotti, “PRISMA-CAD: Fully automated method for Computer-Aided Diagnosis of Dementia based on structural MRI data,” in Proc MICCAI Workshop Challenge on Computer-Aided Diagnosis of Dementia Based on Structural MRI Data, 2014, pp. 16–23. CR - [10] D. S. Marcus, T. H. Wang, J. Parker, J. G. Csernansky, J. C. Morris, & R. L. Buckner, “Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults,” Journal of Cognitive Neuroscience, vol. 19, no. 9, pp. 1498–1507, Sep. 2007. CR - [11] R. Casanova, F.-C. Hsu, & M. A. Espeland, Alzheimer’s Disease Neuroimaging Initiative, “Classification of Structural MRI Images in Alzheimer’s Disease from the Perspective of ill-Posed Problems,” PLoS One, vol. 7, no. 10, e44877, 2012. CR - [12] J. P. Vert, K. Tsuda, B. Schölkopf, “A primer on kernel methods,” in Kernel Methods in Computational Biology, 2nd ed., Cambridge, MA: MIT Press, 2004. CR - [13] J. Ramírez, J. M. Górriz, D. Salas-Gonzalez, A. Romero, M. López, I. Álvarez, M. Gómez-Río, “Computer-aided diagnosis of Alzheimer’s type dementia combining support vector machines and discriminant set of features,” Information Sciences, vol. 237, no. 10, pp. 59-72, Jul. 2013. CR - [14] A. Demirhan, Y. A. Kılıç, İ. Güler, “Artificial Intelligence Applications in Medicine,” Turkish Journal of Intensive Care Medicine, vol. 9, no. 1, pp. 31-41, 2010. CR - [15] Y. Zhang, Z. Dong, L. Wu, S. Wang, “A hybrid method for MRI brain image classification,” Expert Systems with Applications, vol. 38, no. 8, pp. 10049-10053, Aug. 2011. CR - [16] C.-W. Hsu, C.-C. Chang, and C.-J. Lin, “A practical guide to support vector classification,” Department of Computer Science, National Taiwan University, Taipei, Taiwan, Tech. Rep., 2003. UR - https://doi.org/10.18201/ijisae.270708 L1 - https://dergipark.org.tr/tr/download/article-file/237444 ER -