TY - JOUR TT - One–generator quasi–abelian codes revisited AU - Jitman, Somphong AU - Udomkavanich, Patanee PY - 2017 DA - January DO - 10.13069/jacodesmath.09585 JF - Journal of Algebra Combinatorics Discrete Structures and Applications PB - iPeak Academy WT - DergiPark SN - 2148-838X SP - 49 EP - 60 VL - 4 IS - 1 KW - Group algebras KW - Quasi-abelian codes KW - Minimum distances KW - 1-generator N2 - The class of 1-generator quasi-abelian codes over finite fields is revisited. Alternative and explicitcharacterization and enumeration of such codes are given. An algorithm to find all 1-generatorquasi-abelian codes is provided. Two 1-generator quasi-abelian codes whose minimum distances areimproved from Grassl’s online table are presented. CR - [1] S. D. Berman, Semi–simple cyclic and abelian codes. II, Kibernetika 3(3) (1967) 21–30. CR - [2] S. D. Berman, On the theory of group codes, Kibernetika 3(1) (1967) 31–39. CR - [3] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24(3–4) (1997) 235–265. CR - [4] C. Ding, D. R. Kohel, S. Ling, Split group codes, IEEE Trans. Inform. Theory 46(2) (2000) 485–495. CR - [5] M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Online available at http://www.codetables.de, Accessed on 2015-10-09. CR - [6] S. Jitman, Generator matrices for new quasi–abelian codes, Online available at https://sites.google.com/site/quasiabeliancodes, Accessed on 2015-10-09. CR - [7] S. Jitman, S. Ling, Quasi–abelian codes, Des. Codes Cryptogr. 74(3) (2015) 511–531. CR - [8] K. Lally, P. Fitzpatrick, Algebraic structure of quasicyclic codes, Discrete Appl. Math. 111(1–2) (2001) 157–175. CR - [9] S. Ling, P. Solé, On the algebraic structure of quasi–cyclic codes I: Finite fields, IEEE Trans. Inform. Theory 47(7) (2001) 2751–2760. CR - [10] S. Ling, P. Solé, Good self–dual quasi–cyclic codes exist, IEEE Trans. Inform. Theory 49(4) (2003) 1052–1053. CR - [11] S. Ling, P. Solé, On the algebraic structure of quasi–cyclic codes III: Generator theory, IEEE Trans. Inform. Theory 51(7) (2005) 2692–2700. CR - [12] F. J. MacWilliams, N. J. A. Sloane, The Theory of Error–Correcting Codes, Amsterdam, The Netherlands: North–Holland, 1977. CR - [13] J. Pei, X. Zhang, 1-generator quasi–cyclic codes, J. Syst. Sci. Complex. 20(4) (2007) 554–561. CR - [14] G. E. Seguin, A class of 1-generator quasi–cyclic codes, IEEE Trans. Inform. Theory 50(8) (2004) 1745–1753. CR - [15] S. K. Wasan, Quasi abelian codes, Pub. Inst. Math. 21(35) (1977) 201–206. UR - https://doi.org/10.13069/jacodesmath.09585 L1 - https://dergipark.org.tr/tr/download/article-file/266778 ER -