TY - JOUR T1 - Effect of Dental Implant Dimensions on Fatigue Behaviour: A Numerical Approach TT - DENTAL İMPLANT ÖLÇÜLERİNİN YORULMA DAVRANIŞINA ETKİSİ: SAYISAL BİR YAKLAŞIM AU - Topkaya, Hüsna AU - Kaman, Mete Onur PY - 2018 DA - December Y2 - 2018 DO - 10.17482/uumfd.299899 JF - Uludağ Üniversitesi Mühendislik Fakültesi Dergisi JO - UUJFE PB - Bursa Uludağ Üniversitesi WT - DergiPark SN - 2148-4155 SP - 249 EP - 260 VL - 23 IS - 3 LA - en AB - In this study, the effect of the implant shapeon fatigue behaviour was investigated with the finite element method. Theimplant material used was Ti6Al4V. Theexamination focus on the effect on the implant life with respect to changes inthe crest and root dimension, thread depth, thread pitch, implant length,implant diameter, chamfer length, chamfer radius, and groove length to implantlength ratio. Models were subjected to fatigue analysis according to ISO 14801standard with ANSYS finite element software. The mean stress correction theoryis chosen in fatigue life solutions. Asa result, the parameters seen to have the most effect on dental implant fatiguebehaviour were the implant length and diameter. The parameters with the mosteffect on the implant screw fatigue were pitch and the height of the tooth. KW - Dental implant KW - Fatigue KW - Finite element method KW - ISO 14801 N2 - Bu çalışmada implant şeklinin yorulmadavranışına etkisi sonlu elemanlar metoduyla araştırılmıştır. İmplant malzemesiolarak Ti6Al4V kullanılmıştır. Çalışmada diş dibi kalınlığı, diş üstükalınlığı, diş yüksekliği, diş hatvesi, implant boyu, implant çapı, pah boyu,pahın yarı çapı ve oyuk boyu değerlerinin değişiminin implant ömrüne etkisiaraştırılmıştır. Modeller ISO 14801 standardında belirtilen kriterlere göre ANSYSprogramında yorulma analizine tabi tutulmuştur. Sonuçta dental implantlarınyorulma davranışını en çok etkileyen boyut değerlerinin implant çapı ve implantboyu olduğu görülmüştür. İmplant vidası yorulma ömrü üzerindeki en etkiliparametreler hatve ve diş yüksekliğidir. CR - Ao J., Li T., Liu Y., Ding Y., Wu G., Hua K., Kong L. Optimal design of thread height and width on an immediately loaded cylinder implant: A finite element analysis, Computers in Biology and Medicine 2010; 40: 681-686 doi:10.1016/j.compbiomed.2009.10.007. CR - Ausiello P., Franciosa P., Martorelli M.,Watts D.C. Effects of thread features in osseo-integrated titanium implants using a statistics-based finite element method. Dental Materials 2012; 28: 919-927. doi: 10.1016/j.dental.2012.04.035 CR - Barbier L., Vander Sloten J., Krzesinski G., Schepers E., Van Der Perre G. Finite element analysis of non-axial versus axial loading of oral implants in the mandible of the dog. Journal of Oral Rehabilitation.1998;25:847-858.doi: 10.1046/j.13652842.1998.00318.x CR - Chun H-J., S.-Y. Cheong S-Y., Han J-H., Heo S-J., Chung J-P., Rhyu I-C., Choı Y-C., Baik H-K., Ku Y. ve Kım M-H. Evaluation of design parameters of osseointegrated dental implants using finite element analysis. Journal of Oral Rehabilitation 2002; 29: 565–574. doi: 10.1046/j.1365-2842.2002.00891.x CR - Daas, M., Dubois, G., Bonnet, A. S., Lipinski, P., Rignon-Bret, C. A complete finite element 224 model of a mandibular implant retained overdenture with two implants: Comparison between rigid and 225 resilient attachment configurations. Medical Engineering & Physics 2008; 30: 218-225. doi: 10.1016/j.medengphy.2007.02.005 CR - Dilek O., Tezulas E., Dincel M. Required minimum primary stability and torque values for immediate loading of mini dentalimplants: an experimentalstudy in nonviable bovine femoral bone. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 2008; 105: 20-27. doi: 10.1016/j.tripleo.2007.10.003. CR - Dittmer S., Dittmer M.P., Kohorst P., Jendras M., Borchers L., Stiesch M. Effect of implant–abutment connection design on load bearing capacity and failure mode of implants. Journal of Prosthodontics 2011; 20: 510-516. doi: 10.1111/j.1532-849X.2011.00758.x CR - Djebbar N., Serier B., Bachir Bouiadjra B., Benbarek S., Drai A. Analysis of the effect of load direction on the stress distribution in dental implant. Materials & Design 2010; 31: 2097-2101. doi: 10.1016/j.matdes.2009.10.042 CR - Ekici B. Numerical Analysis of a dental system in three-dimension. Advances in Engineering Software 2002; 33: 109-113. doi: 10.1016/S0965-9978(01)00056-4 CR - Figueiredo R.B., Barbosa E. R. C., Zhao X., Yang X., Liu X., Cetlin P.R., Langdon T.G. Improving the fatigue behavior of dental implants through processing commercial purity titanium by equal-channel angular pressing. Materials Science and Engineering: A 2014; 619: 312-318. doi: 10.1016/j.msea.2014.09.099 CR - Geringer A., Diebels S., Nothdurft F.P. Influence of super structure geometry on the mechanical behavior of zirconia implant abutments: a finite element analysis. Biomedizinische Technik. Biomedical engineering 2014; 59(6):501-6. doi: 10.1515/bmt-2013-0088. CR - ISO 14801: Dentistry – Implants – Dynamic fatigue test for endosseous dental implants, 2007. CR - Kaman M. O., Celik N., Kilic F. Effects of the dimensions of threads on stress distributions of the dental implants. Turkish Journal of Science and Technology. 2012; 7(2):, 153-166. CR - Karl M., Kelly R. Influence of loading frequency on implant failure under cyclic fatigue conditions, Dental Materials 2009; 25: 1426-1432. doi: 10.1016/j.dental.2009.06.015 CR - Kayabasi O., Yuzbasioglu E., Erzincanli F. Static, dynamic and fatigue behaviors of dental implant using finite element method. Advances in Engineering Software 2006; 3: 649-658. doi:10.1016/j.advengsoft.2006.02.004 CR - Kitagawa, T., Tanimoto, Y., Odaki, M., Nemoto, K., Aida, M. Influence of implant/abutment joint designs on abutment screw loosening in a dental implant system. Journal of Biomedical Materials Research Part B-Applied. Biomaterials 2005; 75, 457–463. doi: 10.1002/jbm.b.30328 CR - Kong L., Gu Z., Hu K., Zhou H., Liu Y., Liu B. Optimization of the implant diameter and length in type B/2 bone for improved biomechanical properties: A three-dimensional finite element analysis, Advances in Engineering Software. 2009; 40: 935-940. doi: 10.1016/j.advengsoft.2008.12.010 CR - Li T., Hub K., Cheng L., Ding Y., Ding Y., Shao J., Kong L. Optimum selection of the dental implant diameter and length in the posterior mandible with poor bone quality – A 3D finite element analysis, Applied Mathematical Modelling. 2011; 35: 446-456. doi: 10.1016/j.apm.2010.07.008 CR - Lin D., Li Q., Li W., Swain M. Bone remodeling ınduced by dental ımplants of functionally graded materials. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2010; 92: 430-438. doi: 10.1002/jbm.b.31531 CR - Meriç G., Erkmen E., Kurt A., Tunç Y., Eser A., Influence of prosthesis type and material on the stress distribution in bone around implants: A 3-dimensional finite element analysis. Journal of Dental Sciences2011; 5(3):156−165. doi: 10.1016/j.jds.2011.02.005 CR - Moraes SL, Pellizzer EP, Verri FR, Santiago JF Jr, Silva JV. Three-dimensional finite element analysis of stress distribution in retention screws of different crown-implant ratios. Computer Methods in Biomechanics and Biomedical Engineering. 2015; 18: 689-696. doi: 10.1080/10255842.2013.820719 CR - Park S., Won S.Y., Bae T.S., Song K.Y., Park C.W., Eom T.G. ve Jeong C.M. Fatigue characteristics of five types of implant-abutment joint designs. Metals and Materials International 2008; 14: 133-138. doi: 10.3365/met.mat.2008.04.133 CR - Prados-Privado M., Prados-Frutos J.C., Manchón Á., Rojo R., Felice P., Bea J.A.Dental implants fatigue as a possible failure of implantologic treatment: the importance of randomness in fatigue behaviour. BioMed Research International 2015; 825402. doi: 10.1155/2015/825402 CR - Schiefer H., Bram M., Buchkremer H.P., Stover D. Mechanical examinations on dental implants with porous titanium coating. Journal of Materials Science: Materials in Medicine 2009; 20: 1763–1770. doi: 10.1007/s10856-009-3733-1 CR - Sevilla P., Sandino C., Arciniegas M., Martinez-Gomis J., Peraire M., Gil F.J.. Evaluting mechanical properties and degradation of YTZP dental implants, Materials Science and Engineering C: Materials for Biological Applications. 2010; 30: 14-19. doi: 10.1016/j.msec.2009.08.002 CR - Silva N.R.F.A., Coelho P.G., Fernandes C.A.O., Navarro J.M., Dias R.A., Thompson V.P.. Reliability of one-piece ceramic implant. Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2008; 419-426. doi: 10.1002/jbm.b.31113 CR - Şahin S., Çehreli M. C., Yalçın E., The influence of functional forces on the biomechanics of implant-supported prostheses-A review. Journal of Dentistry 2002; 20: 271−282. doi: 10.1016/S0300-5712(02)00065-9 CR - Topkaya H. Dental implant uygulamalarında yorulma davranışının sayısal olarak incelenmesi”, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2014. CR - Yang J., Xiang H.J. A three-dimensional finite element study on the biomechanical behavior of an FGBM dental implant in surrounding bone. Journal of Biomechanics. 2007; 40: 2377–2385. doi: 10.1016/j.jbiomech.2006.11.019. UR - https://doi.org/10.17482/uumfd.299899 L1 - http://dergipark.org.tr/tr/download/article-file/613986 ER -