TY - JOUR TT - No MacWilliams duality for codes over nonabelian groups AU - Julian Jr., M. Ryan PY - 2018 DA - January DO - 10.13069/jacodesmath.369864 JF - Journal of Algebra Combinatorics Discrete Structures and Applications PB - iPeak Academy WT - DergiPark SN - 2148-838X SP - 45 EP - 49 VL - 5 IS - 1 KW - Dual code KW - Subgroup lattice KW - MacWilliams identity KW - Iwasawa group N2 - Dougherty, Kim, and Sol\'e [3] have asked whether there is a duality theory and a MacWilliams formula for codes over nonabelian groups, or more generally, whether there is any subclass of nonabelian groups which have such a duality theory. We answer this in the negative by showing that there does not exist a nonabelian group $G$ with a duality theory on the subgroups of $G^n$ for all $n$. CR - [1] J. Chifman, Note on direct products of certain classes of finite groups, Commun. Algebra 37(5) (2009) 1831–1842. CR - [2] R. Dedekind, Ueber Gruppen, deren sämmtliche Theiler Normaltheiler sind, Math. Ann. 48(4) (1897) 548–561. CR - [3] S. Dougherty, J.-L. Kim, P. Solé, Open problems in coding theory, Contemp. Math. 634 (2015) 79–99. CR - [4] K. Iwasawa, Über die endlichen Gruppen und die Verbände ihrer Untergruppen, J. Fac. Sci. Imp. Univ. Tokyo. Sect. I. 4 (1941) 171–199. CR - [5] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994. CR - [6] M. Suzuki, On the lattice of subgroups of finite groups, Trans. Amer. Math. Soc. 70(2) (1951) 345–371. CR - [7] G. Zacher, Caratterizzazione dei gruppi immagini omomorfe duali di un gruppo finito, Rend. Sem. Mat. Univ. Padova 31 (1961) 412–422. UR - https://doi.org/10.13069/jacodesmath.369864 L1 - https://dergipark.org.tr/tr/download/article-file/389000 ER -