TY - JOUR T1 - Isı Transferi Akışkanı Olarak Eriyik Tuz Kullanılan Bir Gövde Boru Tipi Isı Değiştiricisinin Hesaplamalı Akışkanlar Dinamiği Programı ile Analizi TT - Analysis with Computational Fluid Dynamics Software of a Shell-and-Tube Heat Exchanger Using Molten Salt as Heat Transfer Fluid AU - Söyler, Mustafa AU - Aktaş, Mustafa PY - 2018 DA - March DO - 10.2339/politeknik.389249 JF - Politeknik Dergisi PB - Gazi Üniversitesi WT - DergiPark SN - 2147-9429 SP - 13 EP - 17 VL - 21 IS - 1 LA - tr AB - Bu çalışmadaeriyik tuz kullanılan bir gövde borulu ısı değiştiricisinin ısı transferperformansı bir hesaplamalı akışkanlar dinamiği (HAD) programıyla analizedilmiştir. Bu çalışma literatürde yapılan bir deneyi doğrulamak içingerçekleştirilmiştir. Ticari bir HAD programı olan ANSYS Fluent 14.5 sürümü buçalışmada kullanılmıştır. Eriyik tuz ısı değiştiricisine farklı sıcaklıkaralıklarında (360 ˚C – 400 ˚C) ve farklı debilerde (0,48 – 1,87 m3/h)girmektedir. Elde edilen sayısal sonuçlar ile literatürden seçilen çalışmadakideneysel sonuçlarla karşılaştırılmıştır ve iyi bir uyum sağlandığı görülmüştür.Bu çalışmada geliştirilen sayısal HAD modeli ileriki çalışmalardakullanılabilecektir.  KW - Eriyik tuz KW - HAD KW - ısı değiştiricisi N2 - In this presentstudy, heat transfer performance of a shell and tube heat exchanger used moltensalt is analyzed by a computational fluid dynamic (CFD) programing. The modelis prepared regard as a literature study that includes experimental results forvalidation. ANSYS 14.5 numerical package software is used in the solution ofcases. The special heat transfer fluid, molten salt is used as fluid materialthat has been used between 360 ˚C – 400 ˚C and 0,48 – 1,87 m3/h. The numericalresults are compared with experimental results in literature and a goodconformity has been achieved with considering limited numerical errors. In thisstudy may be used in future studies developed numerical CFD models. CR - [1] Wei X., Peng Q., Ding J., Yang X., Yang J.P., Long B., “Theoretical study on thermal stability of molten salt for solar thermal power”, Appl. Therm. Eng., 54: 140–144, (2013). CR - [2] Pacio J., Singer C., Wetzel T., Uhlig R., “Thermodynamic evaluation of liquid metals as heat transfer fluids in concentrated solar power plants”, Appl. Therm. Eng., 60: 295-302, (2013). CR - [3] Rovira A., Montes M.J., Varela F., Gil M., “Comparison of heat transfer fluid and direct steam generation technologies for integrated solar combined cycles”, Appl. Therm. Eng., 52: 264-274 (2013). CR - [4] Mussard M., Nydal,O.J., “Comparison of oil and aluminum-based heat storage charged with a small-scale solar parabolic trough”, Appl. Therm. Eng., 58: 146-154, (2013). CR - [5] Kearney D., Kelly B., Herrmann U., “Engineering aspects of a molten salt heat transfer fluid in a trough solar field”, Energy, 29: 861–864, (2004). CR - [6] Sohal M.S., Sabharwall P., Calderoni P., “Conceptual Design of Forced Convection Molten Salt Heat Transfer Testing Loop”, INL/EXT-10-19908, 6–10, (2010). CR - [7] Olivares R.I., “The thermal stability of molten nitrite/nitrates salt for solar thermal energy storage in different atmospheres”, Sol. Energy, 86: 2576–2583, (2012). CR - [8] Wang Y.J., . Liu Q.B, Lei L.J., Jin H.G., “A three-dimensional simulation of a parabolic trough solar collector system using molten salt as heat transfer fluid”, Appl. Therm. Eng., 70: 462–476 (2014). CR - [9] Cordaro JG, Rubin NC, Bradshaw RW., “Multicomponent molten salt mixtures based on nitrate/nitrite anions”, J Sol Energy Eng-Trans ASME, 133: 011014, (2011). CR - [10] Barlev D, Vidu R, Stroeve P., “Innovation in concentrated solar power”, Sol Energy Mater Sol Cells, 95: 2703–25, (2011). CR - [11] Ruegamer T., Kamp H., Kuckelkorn T., Schiel W., Weinrebe G., Nava P., Riffelmann K.J., “Molten Salt for Parabolic Trough Applications: System Simulation and Scale Effects”, Energy Procedia, 00: 000–000, (2013). CR - [12] Zhang HL, Baeyens J, Degreve J, Caceres G., “Concentrated solar power plants: review and design methodology”, Renew Sustain Energy Rev., 22: 466–81 (2013). CR - [13] Pacheco J.E., Showalter S.K., Kolb W.J., “Development of a Molten-Salt Thermocline Thermal Storage System for Parabolic Trough Plants”, J. Sol. Energy Eng., 124(2): 153-159, (2002). CR - [14] Zalba B., Marin J.M., Cabeza L. F., Mehling H., “Review on thermal energy storage with phase change: materials, heat transfer analysis and applications”, Applied Thermal Eng., 23: 251–283,(2003). CR - [15] Sieder E.N., Tate G.E., “Heat transfer and pressure drop of liquids in tubes”, Ind. Eng. Chem., 28: 1429-1435, (1936). CR - [16] Gnielinski V., “New equations for heat and mass transfer in turbulent pipe and channel flow”, Int. Chem. Eng., 16: 359-367, (1976). CR - [17] Petukhov B.S., “Heat transfer and friction in turbulent pipe flow with variable physical properties”, Advances in Heat Transfer, 6: 503-565, (1970). CR - [18] Y. Zhen, S.V. Garimella, “Thermal analysis of solar thermal energy storage in a molten-salt thermocline”, Sol. Energy, 88: 974-985, (2011). CR - [19] Xu C., Wang Z.F., He Y.L., Li X., Bai F.W., “Sensitivity analysis of the numerical study on the thermal performance of a packed-bed molten salt thermocline thermal storage system”, Appl. Energy, 92: 65-75, (2011). CR - [20] Hoffman H.W., Lones J., “Fused Salt Heat Transfer, Part II: Forced Convection Heat Transfer in Circular Tubes Containing NaF–KF–LiF Eutectic”, ORNL-1777, (1955). CR - [21] Hoffman H.W., Cohen S.I., “Fused Salt Heat Transfer, Part III: Forced Convection Heat Transfer in Circular Tubes Containing the Salt Mixture NaNO2–KNO3–NaNO3”, ORNL-2433, (1960). CR - [22] Kakaç S., Liu H., “Heat Exchangers Selection, Rating and Thermal Design”, Second edition, CRC Press, USA, (2002). CR - [23] He, S., Lu, J., Ding, J., Yu, T., Yuan, Y. “Convective heat transfer of molten salt outside the tube bundle of heat exchanger”, Experimental Thermal and Fluid Science, 59: 9-14, (2014). CR - [24] White, F.M.. “Akışkanlar Mekaniği”, (çev. K. Kırkköprü, E. Ayder) Literatür Yayınevi (Eserin orjinali 1979’da yayımlandı), Birinci Baskı, Türkiye, (2004). CR - [25] Bergman T.L., Incropera F. P., DeWitt D.P., Lavine A.S. “Fundamentals of Heat and Mass Transfer”, Seventh edition, Wiley, USA, (2011). UR - https://doi.org/10.2339/politeknik.389249 L1 - http://dergipark.org.tr/tr/download/article-file/417873 ER -