TY - JOUR T1 - Görüntü İşleme Tekniklerinin Sürdürülebilir Tarımdaki Yeri ve Önemi: Literatür Çalışması AU - Ağın, Onur AU - Malaslı, M. Zahid PY - 2016 DA - October JF - Tarım Makinaları Bilimi Dergisi JO - JAMS PB - Tarım Makinaları Derneği WT - DergiPark SN - 1306-0007 SP - 199 EP - 206 VL - 12 IS - 3 LA - tr AB - Bu çalışmada, görüntü işleme tekniklerinin sürdürülebilir tarım stratejileri arasındaki yeri veöneminin değerlendirilmesi yapılmıştır. Sürdürülebilir tarıma yönelik 2011-2016 yılları arasındagörüntü işleme teknikleri ile ilgili çalışmalara ait yayınlar üzerinde sentez yapılarak bu konuda ileriyeyönelik araştırma gereksinimi olan alanların ortaya çıkarılması hedeflenmiştir.Görüntü işleme tekniklerinin, özellikle sulama, gübreleme, ilaçlama başta olmak üzere tarımsalgirdilerde etkinliğin arttırılmasına olanak sağlaması ve diğer alanlardaki başarılı uygulamalarıylasürdürülebilir tarıma önemli ölçüde katkı sağladığı görülmüştür. Yöntemin, anlık olarak vejetasyontayini, toprak nem içeriğinin belirlenmesi, hastalık ve yabancı ot lokasyonlarının saptanması,tarımsal materyallerin sınıflandırılması gibi uygulamalarda sayısallaştırmaya elverişli olması veotomasyona aktarılabilme yeteneği bu katkının sağlanmasında önemli yer tutmaktadır. Ancakyapılan çalışmaların pratiğe aktarılması hususunda eksiklikler gözlenmekte ve bu konudaorganizasyonun sağlanması ve desteklerin arttırılması gerekmektedir. Böylece görüntü işlemetekniklerinin sürdürülebilir tarıma katkısının da giderek artacağı tahmin edilmektedir. KW - Görüntü işleme CR - Anonim (2016). http:// tr.wikipedia.org (Accessed to web:20.05.2016). CR - Artizzu X P B, Ribeiro A, Guijarro M, Pajares G (2011). Realtime image processing for crop/weed discrimination in maize fields. Computers and Electronics in Agriculture, 75: 337–346. CR - Barbedo J G A (2014). Using digital image processing for counting whiteflies on soybean leaves. Journal of Asia- Pacific Entomology, 17: 685–694. CR - Cai X, Sun Y, Zhao Y, Damerow L, Lammers P S, Sun W, Lin J, Zheng L ve Tang Y (2013). Smart detection of leaf wilting by 3D image processing and 2D Fourier transform. CR - Computers and Electronics in Agriculture, 90: 68-75. CR - Dutta M K, Issac A, Minhas N, Sarkar B (2016). Image processing based method to assess fish quality and freshness. Journal of Food Engineering, 177: 50-58. CR - Ellahyani A, El Ansari M, El Jaffari I (2016). Trafic sign detection and recognition based on random forests. Applied Soft Computing, In Press:Corrected proof. CR - FAO (2013). Food and Agriculture Organization of the United Nations, FAO Statistics Division, http://www.faostat.org (Erişim tarihi: Mayıs 2015). CR - Fuentes S, Palmer A R, Taylor D, Zeppel M, Whitley R, Eamus D (2008). Anautomated procedure for estimating the leaf area index (LAI) of woodland ecosystems using digital imagery, MATLAB programming and its application toan examination of the relationship between remotely sensed and field measurements of LAI. Funct. Plant Biol. 35: 1070–1079. CR - Guijarro M, Pajares G, Riomoros I, Herrera P J, Artizzu X P B, Ribeiro A (2011). Automatic segmentation of relevant textures in agricultural images. Computers and Electronics in Agriculture, 75: 75–83. CR - Harrison S, Carrol B, Beasley J, Baraniuk R (2004). Optimization of image recognition: Fingerprint Matching. http://cnx.org (Accesed to web: 15.05.2016).Jiang G, Wang Z, Liu H (2015). Automatic detection of crop rows based on multi-ROIs. Expert Systems with Applications, 42: 2429-2441. CR - Keresztes J C, Goodarzi M, Saeys W (2016). Real-time pixel based early apple bruise detection using short wave infrared hyperspectral imaging in combination with calibration and glare correction techniques. Food Control, 66: 215-226. CR - Linker R, Cohen O, Naor A (2012). Determination of the number of green apples in RGB images recorded in orchards. Computers and Electronics in Agriculture, 81: 45–57. CR - Mateos G G, Hernández J L H, Henarejos D E, Terrones S J, Martínez J M M (2015). Study and comparison of color models for automatic image analysis inirrigation management applications. Agricultural Water Management, 151: 158-166. CR - Montalvo M, Pajares G, Guerrero J M, Romeo J, Guijarro M, Ribeiro A, Ruz J J, Cruz J M (2012). Automatic detection of crop rows in maize fields with high weeds pressure. Expert Systems with Applications, 39: 11889-11897. CR - Mora M, Avila F, Benavides M C, Maldonado G, Cáceres J O, Fuentes S (2016). Automated computation of leaf area index from fruit trees using improved image processing algorithms applied to canopy cover digital photograpies. Computers and Electronics in Agriculture, 123:195-202. CR - Pacheco D G F, Henarejos D E, Canales A R, Conesa J, Martinez J M M (2014). A digital image-processing-based method for determining the crop coefficient of lettuce crops in the southeast of Spain. Biosystems Engineering, 117: 23-34. CR - Pourreza A, Pourreza H, Fard M H A, Sadrnia H (2012). Identification of nine Iranian wheat seed varieties by textural analysis with image processing. Computers and Electronics in Agriculture, 83: 102–108. CR - Pujari J D, Yakkundimath R, Byadgı A (2015). Image processing based detection of fungal diseases in plants. Procedia Computer Science, 46:1802-1808. CR - Rahman M, Blackwell B, Banerjee N, Saraswat D (2015). Smartphone-based hierarchical crowdsourcing for weed identification. Computers and Electronics in Agriculture, 113: 14–23. CR - Reis M J C S, Morais R, Peres E, Pereira C, Contente O, Soares S, Valente A, Baptista J, Ferreira P J S G, Cruz J B (2012). Automatic detection of bunches of grapes in natural environment from color images. Journal of Applied Logic ,10: 285–290. CR - Sanchez L O S, Miranda R C, Escalante J J G, Pacheco I T, González R G G, Miranda C L C, CR - Lumbreras P D A (2011). Scale invariant feature approach for insect monitoring. Computers and Electronics in Agriculture, 75: 92–99. CR - Sanchis J G, Guerrero J D M, Olivas E S, Sober M M, Benedito R M, Blasco J (2012). Detecting rottenness caused by Penicillium genus fungi in citrus fruits using machine learning techniques. Expert Systems with Applications, 39: 780–785. CR - Solis-Sánchez L O, García-Escalante J J, Casta˜neda-Miranda R, Torres-Pacheco I, Guevara González R G, (2009). Machine vision algorithm for whiteflies (Bemisia tabaci Genn.) scouting under greenhouse environment. Journal of Applied Entomology, 133 (7):546–552. CR - Tang J, Chen X, Miao R, Wang D (2016). Weed detection using image processing under different illumination for site-specific areas spraying. Computers and Electronics in Agriculture, 122: 103–111. CR - Tellaeche A, Pajares G, Artizzu X P B, Ribeiro A (2011). A computer vision approach for weeds identification through Support Vector Machines. Applied Soft Computing, 11: 908–915. CR - Wang D C, Yang Y, Qiang Z J, Kai Z H, Fei L (2014). Detection of thrips defect on Green-Peel Citrus using hyperspectral imaging technology combining PCA and Bspline lighting correction method. Journal of Integrative Agriculture, 13(10): 2229-2235. CR - Yao Q, Xıan D, Lıu Q1, Yang B, Dıao G, Tang J (2014). Automated counting of rice planthoppers in paddy fields based on image processing. Journal of Integrative Agriculture, 13(8): 1736-1745. UR - https://dergipark.org.tr/tr/pub/tarmak/issue//391531 L1 - https://dergipark.org.tr/tr/download/article-file/420906 ER -