TY - JOUR T1 - NON-ISOTHERMAL FLOW MODELS WITH MASS DIFFUSION FOR A STATIONARY POROUS MEDIA BY EMPLOYING REPRESENTATIVE ELEMENTARY VOLUME TT - İZOTERMAL OLMAYAN VE KÜTLESEL DİFÜZYONUN MEVCUT OLDUĞU DURGUN BİR GÖZENEKLİ ORTAM İÇERİSİNDEKİ AKIŞKAN AKIŞININ TEMSİLİ BİR TEMEL HACİM KULLANILARAK MODELLENMESİ AU - Alakuş, Bayram PY - 2010 DA - December JF - Journal of Science and Technology of Dumlupınar University JO - DPÜFBED PB - Kütahya Dumlupınar Üniversitesi WT - DergiPark SN - 2651-2769 SP - 49 EP - 58 IS - 023 LA - en AB - Nowadays, in many industrialapplications, porous materials play an important role in the designand development processes. For instance, in alloy solidification, between the solid and the fluid phases there is a region called mushy zone whichcontains both fluid and solid. Its structure is very complicated but canbe handled as an anisotropic porous medium with directional variation inpermeability. Other industrial applications such as flow over heatexchanger matrices, flow through turbo-machines, primary and secondary oil recoveries etc. can very well be approximated as porous media. Finally, it seems appropriate to mention that cooling of electronicmicro systems is becoming more and more important as much of our modernday equipment contains more and more electronic circuits. In order toincrease their performance and life, it is essential to have propercooling arrangement. A reliable flow and heat transfer prediction in these arrangements is always difficult due to the complexity of flowstructure. However, a porous medium approximation to such problems can beefficient. The generalized procedure described in this study is a good approximationfor these structures. KW - Non-isothermal Porous media flow KW - Mathematical modelling KW - Representative Elementary Volume (REV) N2 - Günümüzteknolojisinde, birçok endüstriyel uygulamada gözenekli materyaller dizayn vegeliştirmede önemli bir rol oynar. Örneğin, katılaşma problemindeki katılaşmaesnasında oluşan katı ve akışkan bölgeleri bu ortama bir örnektir. Bu problemçok zor bir problem olmakla birlikte, gözenekli ortam akış modeli kullanılarakçözülebilir. Birkaç diğer uygulama örnekleri ise ısı değiştirgeçleri, termik-turbumakinalardaki akışlar, petrol çıkarılması ve proseslere tabi tutulması  sayılabilir. Son bir örnek olarak, performansve ömürlerinin arttırılması için, elektronik mikro sistemlerin soğutulması buakış modeli kullanılarak yapılabilir. Bu çalışmada tanımlanan prosedüre vemodel, bu türlü problemlerin çözümünde iyi ve güvenilir sonuçlar verir. CR - [1] H. Darcy. Les fontaines publiques de la ville de dijon. 1856. CR - [2] J. Bear. Dynamics of Fluids in Porous Materials. American Elsevier, 1972. CR - [3] D.A. Nield and A. Bejan. Convection in Porous Media. Springer—Verlag, New York, 1992. CR - [4] M. Kaviany. Principles of Heat Transfer in Porous Media. Springer—Verlag, New York, 1991. [14] A.Z. Barak. Comments on ’high velocity flow in porous media’ by hassanizadeh and gray. Trans. Porous Media, 2:533—535, 1987. CR - [5] D.K. Gartling, C. E. Hickox, and R.C. Givler. Simulation of coupled viscous and porous flow problems. Comp. Fluid Dyn., 7:23—48, 1996. CR - [6] H.C. Brinkmann. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci. Res., A1:27—34, 1947. CR - [7] H.C. Brinkmann. On the permeability of media consisting of closely packed porous particles. Appl.Sci.Res. A1:81—86, 1948. CR - [8] P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan. Double-diffusive natural convection in an enclosure filled with saturated porous medium - a generalized non-Darcy approach. Num. Heat Transfer, Part A, 30:413—426, 1996. CR - [9] P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan. Natural convective heat transfer in an enclosure filled with fluid saturated variable porosity medium. Int. J. Heat Mass Transfer, 40:3955—3967, 1997. CR - [10] C.T. Hsu and P. Cheng. Thermal dispersion in a porous medium. Int. J. Heat Mass Transfer, 33:1587—1597, 1990. CR - [11] K. Vafai and S.J. Kim. Forced convection in a channel filled with a porous medium: an exact solution. ASME J. Heat Transfer, 111:1103—1106, 1989. CR - [12] P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan. Effects of porosity on natural convective heat transfer in a fluid saturated porous medium. Int. J. Heat Fluid Flow, 19:56—58, 1998. CR - [13] P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan. Double-di usive natural convection in a fluid saturated porous cavity with a freely convecting wall. Int. Comm. Heat Mass Transfer, 24:1121—1130, 1997. CR - [14] J. Bear and Y. Bachmat. Introduction to Modeling Transport Phenomena in Porous Media. Kluwer Acad. Publ., 1990. CR - [15] S. Whitaker. Di usion and dispersion in porous media. A.I.Ch.E. J., 13:420—427, 1961. CR - [16] D.A. Nield. The limitations of the Brinkmann-Forchheimer equation in modeling flow in a saturated porous medium and at an interface. Int. J. Heat and Fluid Flow, 12:269—272, 1991. CR - [17] B. Alazmi and K. Vafai. Analysis of variants within the porous media transport models. ASME J. Heat Transfer, 122:303—326, 2000. CR - [18] S. Whitaker. Flow in porous media i: A theoretical derivation of the Darcy’s law. Transp. Porous media, 1:3—25, 1986. CR - [19] S. Ergun. Fluid flow through packed column. Che. Eng. Pro, 48:89—94, 1952. CR - [20] N. Martys, D.P. Bentz, and J. Garboczi. Computer simulation study of the effective viscosity in Brinkman’s equation. Phys. Fluids, 6:1434—39, 1994. CR - [21] B. Alazmi and K. Vafai. Analysis of fluid flow and heat transfer interfacial conditions between a porous medium and a fluid layer. Int. J. Heat Mass Transfer, 44:1735—1749, 2001. CR - [22] P. Nithiarasu, K.N. Seetharamu, and T. Sundararajan. Numerical investigation of buoyancy driven flow in a fluid saturated non-Darcian porous medium. Int. J. Heat Mass Transfer, 42:1205—1215, 1999. CR - [23] C.L. Tien and K. Vafai. Convective and radiative heat transfer in porous media. Adv. Appl. Mech., 27:225—281, 1990. CR - [24] P.J. Prescott, F.P. Incropera, and D.R. Gaskell. Convective transport phenomena and macro segregation during solidification of a binary metal alloy: Ii-experiments and comparison with numerical predictions. J. Heat Transfer, 116:742—749, 1994. CR - [25] P.J. Prescott and F.P. Incropera. Convective transport phenomena and macro segregation during solidification of a binary metal alloy: I-numerical predictions. J. Heat Transfer, 116:735—741, 1994. CR - [26] S. Ostrach. Natural convection in enclosures. Adv. Heat Transfer, 8:161—227, 1972. CR - [27] A. Bejan. Convective heat transfer in porous media. In W. Aung S. Kakac, R.K. Shah, editor, Handbook of Single-Phase Convective Heat Transfer, chapter 16. John Wiley & Sons, New York, 1987. UR - https://dergipark.org.tr/tr/pub/dpufbed/issue//405136 L1 - https://dergipark.org.tr/tr/download/article-file/440126 ER -