TY - JOUR T1 - Karaçam testere talaşının polipropilen kompozitlerin mekanik özelliklerine etkisi TT - Effect of black pine sawdust on the mechanical properties of PP composites AU - Narlıoğlu, Nasır AU - Çetin, Nihat Sami AU - Alma, Mehmet Hakkı PY - 2018 DA - June Y2 - 2018 DO - 10.33725/mamad.433532 JF - Mobilya ve Ahşap Malzeme Araştırmaları Dergisi JO - MAMAD PB - Bekir Cihad BAL WT - DergiPark SN - 2636-8625 SP - 38 EP - 45 VL - 1 IS - 1 LA - tr AB - Günümüzdeçevreye olan duyarlılıktaki artış ile birlikte atık maddelerin geridönüştürülebilme konuları üzerine araştırmalar yapılmaktadır. Bu çalışmada polipropilen (PP) polimer matrise ilave edilen farklı oranlardaki karaçam testere talaşından eldeedilen kompozit malzemelerin mekanik özelliklerindeki değişiklikler incelenmiştir.Kompozit üretimi için karaçam testere talaşı ile PP polimer matrisi çiftburgulu ekstruder kullanılarak kompozit pelletleri formuna dönüştürülmüştür.Elde edilen pelletlerden sıcak pres kalıplama tekniği ile 250x250x2 mmebatlarında kompozit levhalar üretilmiştir. Daha sonra üretilen kompozitlevhaların ASTM standartlarına göre çekme, eğilme ve darbe direnci testleriyapılmıştır. Mekanik test sonuçlarına göre en yüksek çekme direnci değeri %10odun unu ilaveli kompozit örneğinde, en yüksek eğilme direnci ise %50 odun unuilaveli kompozit örneğinde tespit edilmiştir. Ayrıca kompozitler arasında enyüksek darbe direnci, %20 odun unu ilaveli kompozit örneğinde elde edilmiştir. KW - karaçam KW - testere talaşı KW - PP KW - kompozit KW - mekanik özellikler N2 - Today studies on the recycling ofwaste materials increasingly gaining importance and increasing with the growingsensitivity to the environment. In this study, the changes in the mechanicalproperties of composite materials produced by adding the black pine sawdustwith thepolypropylenepolymer matrix at different ratios were investigated. For theproduction of composite, black pine saw dust mixed with PP polymer and then,they were converted into pellets using twin-screw extruder and combinedpelletizer. The obtained pellets were molded into composite boards in 250 x 250x 2 mm dimensions via hot press molding technique. Then tensile, bending andimpact resistance tests of composite boards produced were carried out accordingto ASTM standards. According to the results of the mechanical tests, thehighest tensile strength value was found for the composite sample of 10% woodflour loaded composite, while the highest bending strength was found for thecomposite with 50% wood flour. In addition, the highest impact resistance wasobtained for the 20% wood flour added sample among all composites. CR - Ashori, A. (2008). Wood–plastic composites as promising green-composites for automotive industries, Bioresource Technology, 99(11): 4661-4667. CR - ASTM, D638. (2001). Standard test methods for tensile properties of plastics, American Society for Testing and Materials. CR - ASTM, D790. (2003). Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials, American Society for Testing and Materials. CR - ASTM, D256. (2005). Standard test methods for impact resistance of plastics and electrical insulating materials, American Society for Testing and Materials. CR - ASTM, D4703-10. (2010). Standard practice for compression molding thermoplastic materials into test specimens, plaques, or sheets, American Society for Testing and Materials. CR - Bhaskar, J., Haq, S., Pandey, A., & Srivastava, N. (2012). Evaluation of properties of propylene-pine wood plastic composite, Journal of Materials and Environmental Science, 3(3): 605-612. CR - Bromhead, A. (2003). Reducing wood waste in furniture manufacture, Fauna & Flora International, Cambridge, UK. CR - Caulfield, D.F., Clemons, C., Jacobson, R.E., & Rowell, R.M. (2005). 13 Wood Thermoplastic Composites. Handbook of wood chemistry and wood composites: 365. CR - Hull, D., & Clyne, T. (1996). An introduction to composite materials, Cambridge University Press, UK, 326 s. CR - Klyosov, A.A. (2007). Wood-plastic composites, John Wiley & Sons, Inc., Hoboken, New Jersey, 720s. CR - Kumar, R., Obrai, S., & Sharma, A. (2011). Chemical modifications of natural fiber for composite material, Der Chemica Sinica, 2(4): 219-228. CR - Mallick, P.K. (2007). Fiber-reinforced composites: materials, manufacturing and design, CRC press, USA, 638 s. CR - Pritchard, G. (2004). Two technologies merge: wood plastic composites, Reinforced Plastics, 48(6): 26-29. CR - Schwarzkopf, M.J., & Burnard, M.D. (2016). Wood-Plastic Composites-Performance and environmental impacts. Environmental impacts of traditional and innovative forest-based bioproducts, Springer, pp. 19-43. CR - Sofuoğlu, S.D., & Kurtoğlu, A. (2006). Masif ağaç malzemenin işlenmesinde fire oranları. Dumlupınar Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11: 189-204. CR - Smith, P.M., & Wolcott, M.P. (2006). Opportunities for wood/natural fiber-plastic composites in residential and industrial applications, Forest Products Journal, 56(3): 4-11. CR - Stark, N.M., & Matuana, L.M. (2004). Surface chemistry and mechanical property changes of wood-flour/high-density-polyethylene composites after accelerated weathering, Journal of Applied Polymer Science, 94(6): 2263-2273. UR - https://doi.org/10.33725/mamad.433532 L1 - https://dergipark.org.tr/tr/download/article-file/495267 ER -