TY - JOUR T1 - Güç Sistemlerinde Geçici Hal Kararsızlığının Arıza Öncesi Fazör Ölçümleri Kullanarak Karar Ağacı Tabanlı Kestirimi TT - Early Prediction of Transient Instabilities Based on Pre-Fault Phasor Measurements using Decision Tree-based Methods AU - Genç, V. M. İstemihan AU - Saner, Can Berk AU - Kesici, Mert AU - Mahdı, Mohammed AU - Yaslan, Yusuf PY - 2019 DA - April DO - 10.19113/sdufenbed.474888 JF - Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi JO - J. Nat. Appl. Sci. PB - Süleyman Demirel Üniversitesi WT - DergiPark SN - 1308-6529 SP - 6 EP - 14 VL - 23 IS - 1 LA - tr AB - Geçtiğimiz yıllarda, dünya çapında farklı güç sistemlerinde,çok sayıda geniş çaplı enerji kesintileri meydana gelmiş, bu kesintilermilyonlarca tüketicinin olumsuz etkilenmesine neden olmuş ve büyük miktardamali zararlara neden olmuştur. Elektrik güç sistemi tasarımı ve işletmesinde kritikbir role sahip sistem kararlılığı, günümüzdeki önemini korumaktadır. Bir güçsisteminin kararlılık durumunu gerçek zamanlı olarak izlemek, sistemçökmelerini önlemede birincil öneme sahip bir görev olarak kabul edilmektedir. Şebekeninkararlılık durumunun gerçek zamanlı olarak izlenmesi, geniş alan izleme, korumave kontrol sistemlerinin verimliliği açısından önemli bir fonksiyondur. Bufonksiyon ile düzeltici kontrol eylemlerinin zamanında gerçekleştirilebilmesisağlanabilir. Bu çalışmada, güç sisteminde meydana gelebilecek arızalaröncesinde fazör ölçüm birimlerinden alınan gerilimlere ait genlik ve açılarınyanı sıra, arızanın temizlenme süresi ve arızanın temizlenmesi için devredençıkarılan iletim hattına ait topoloji bilgileri de kullanılarak, geçici halkararsızlıklarının kestirimi, karar ağaçlarına dayalı iki farklı yöntem ilegerçekleştirilmiştir. Önerilen makine öğrenmesi modellerinin başarımları veetkinlikleri 29 jeneratörlü 127 baralı WSCC (Batı Eyaletleri KoordinasyonKurulu) test sisteminde uygulanarak gösterilmiştir. KW - Geçici hal kararlılığı KW - Sınıflandırma KW - Kestirim KW - Güç sistemleri KW - Makine öğrenmesi N2 - Inrecent years, many blackouts occurred in power systems of different parts ofthe world, affecting millions of people and causing great economic losses. Powersystem stability, which has a critical role in the design and operation ofelectrical power systems, maintains its importance today. Monitoring thestability status of a power system in real time is regarded as a primary taskin preventing system blackouts. This allows of a sufficient amount of time totake appropriate corrective control actions. In this study, the pre-faultvoltage magnitudes and angles taken from the phasor measurement units (PMU),clearing time of the fault and topology information of the transmission linethat has been tripped for clearing the fault are used to predict the transientinstabilities by two different methods based on the decision trees. The successand the effectiveness of the proposed machine learning models are shown as theyare applied to the 127-bus Western Systems Coordinating Council (WSCC) testsystem. CR - [1] Mohammed S. M. Mahdi. 2018. Wide-area measurement-based early prediction and corrective control for transient stability in power systems. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 144s. İstanbul. CR - [2] North American Synchrophasor Initiative (NASPI) Time Synchronization Task Force (2017). Time synchronization in the electric power system. CR - [3] D. Karlsson and S. . Lindahl, "Wide area protection and emergency control," in Proc. IEEE Power Eng. Soc. General Meeting, 2004, vol. 1, p. 5. CR - [4] Dahal, N., L. King, R., & Madani, V. (2012). Online dimension reduction of synchrophasor data. In Transmission and Distribution Conference and Exposition (T&D). Orlando, FL, USA: IEEE PES, 1-7 CR - [5] Anderson, P. M., Fouad, A. A. (2008). Power system control and stability. Sultan Bazar, India: IEEE India. CR - [6] Kundur, P., Balu, N., Lauby, M. (2009). Power system stability and control. New York: McGraw-Hill. CR - [7] M. A. Pai (1989). Energy Function Analysis for Power System Stability. Boston : Kluwer Academic Publishers CR - [8] Ruiz Vega, D., Pavella, M. (2003). A comprehensive approach to transient stability control: part I-near optimal preventive control. IEEE Transactions On Power Systems, 18(4), 1446-1453. CR - [9] Srinivasan, D., Chang, C., Liew, A., & Leong, K. (n.d.). Power system security assessment and enhancement using artificial neural network. Proceedings of EMPD 98. 1998 International Conference on Energy Management and Power Delivery CR - [10] C. F. Kucuktezcan, V. M. I. Genc 2010. Dynamic security assessment of a power system based on probabilistic neural networks. IEEE PES Innovative Smart Grid Technologies Conf. Europe (ISGT Europe), 11-13 October, 1-6. CR - [11] Lotufo, A., Lopes, M., Minussi, C. (2007). Sensitivity analysis by neural networks applied to power systems transient stability. Electric Power Systems Research, 77(7), 730-738. CR - [12] I. B. Sulistiawati, M. Abdillah, A. Soeprijanto 2011. Neural network based transient stability model to analyze the security of Java-Bali 500 kV power system. International Conference on Electrical Engineering and Informatics (ICEEI), 1-6. CR - [13] Ferreira, W., Silveira, M., Lotufo, A., & Minussi, C. (2006). Transient stability analysis of electric energy systems via a fuzzy ART-ARTMAP neural network. Electric Power Systems Research, 76(6-7), 466-475. CR - [14] V. Vittal 2012. Application of phasor measurements for dynamic security assessment using decision trees. IEEE Power and Energy Society General Meeting, San Diego, USA, 2012. CR - [15] Z. H. Rather, L. Chengxi, C. Zhe, C. L. Bak, & P. Thogersen 2013. Dynamic security assessment of Danish power system based on decision trees: Today and tomorrow. IEEE PowerTech, Grenoble, France, 2013. CR - [16] Liu, C., Sun, K., Rather, Z., Chen, Z., Bak, C., Thogersen, P., & Lund, P. (2014). A Systematic Approach for Dynamic Security Assessment and the Corresponding Preventive Control Scheme Based on Decision Trees. IEEE Transactions On Power Systems, 29(2), 717-730. CR - [17] L. Chengxi, Z. H. Rather, C. Zhe, C. L. Bak, and P. Thogersen 2013. Importance sampling based decision trees for security assessment and the corresponding preventive control schemes: The Danish case study, IEEE PowerTech Grenoble, France, 2013. CR - [18] Genc, I., Diao, R., Vittal, V., Kolluri, S. and Mandal, S. (2010). Decision Tree-Based Preventive and Corrective Control Applications for Dynamic Security Enhancement in Power Systems. IEEE Transactions on Power Systems, 25(3), pp.1611-1619. CR - [19] Moulin, L., daSilva, A., El-Sharkawi, M., & MarksII, R. (2004). Support Vector Machines for Transient Stability Analysis of Large-Scale Power Systems. IEEE Transactions On Power Systems, 19(2), 818-825. CR - [20] Xu, Y., Dong, Z., Zhao, J., Zhang, P., & Wong, K. (2012). A Reliable Intelligent System for Real-Time Dynamic Security Assessment of Power Systems. IEEE Transactions On Power Systems, 27(3), 1253-1263. CR - [21] Mahdi, M., & Genc, V. M. I. (2018). Post-fault prediction of transient instabilities using stacked sparse autoencoder. Electric Power Systems Research, 164, 243-252. CR - [22] L. Breiman, J. Friedman, R. A. Olshen, & C. J. Stone 1984. Classification and Regression Trees. Belmont, CA: Wadsworth. CR - [23] Shi, H. 2007. Best-first Decision Tree Learning. The University of Waikato, Yüksek Lisasns Tezi, Hamilton, New Zealand. CR - [24] Meng, Q., Ke, G., Wang, T., Chen, W., Ye, Q., Ya, Z., & Liu, T. (2016). A Communication-Effcient Parallel Algorithm for Decision Tree. In 30th International Conference on Neural Information Processing Systems. Barcelona, Spain, 1271-1279. CR - [25] Fan, D. 2008. Synchronized Measurements And Applications During Power System Dynamics. Virginia Polytechnic Institute and State University, Doktora Tezi, 182s, Virginia. CR - [26] Beyranvand, P. , Genç, V. M. I. , Çataltepe, Z. 2018. Multilabel learning for the online transient stability assessment of electric power systems. Turkish J. Electr. Eng. Comput. Sci, 26(2018), 2661-2675. CR - [27] DSATools. 2018. Dynamic Security Assessment Software Package. http://www.dsatools.com (Erişim Tarihi: 19.10.2018) CR - [28] Louppe, G., Wehenkel, L., Sutera, A., Geurts, P. 2013. Understanding variable importances in forests of randomized trees. 6th International Conference on Neural Information Processing Systems. Nevada, 431-439. CR - [29] Guyon, I., Weston, J., Barnhilll, S. 2002. Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning, 46(2002), 389-422. UR - https://doi.org/10.19113/sdufenbed.474888 L1 - http://dergipark.org.tr/tr/download/article-file/695665 ER -