TY - JOUR T1 - A JAVA APPLICATION FOR OPTIMIZATION OF STOCK ALLOCATION IN CONTINGENCY LOGISTICS NETWORKS: COLONOR TT - A JAVA APPLICATION FOR OPTIMIZATION OF STOCK ALLOCATION IN CONTINGENCY LOGISTICS NETWORKS: COLONOR AU - Deste, Mustafa AU - Miman, Mehmet AU - Tuna, Hüseyin Alper AU - Sarıışık, Gencay PY - 2019 DA - November DO - 10.20990/kilisiibfakademik.532274 JF - Akademik Araştırmalar ve Çalışmalar Dergisi (AKAD) PB - Kilis 7 Aralık Üniversitesi WT - DergiPark SN - 2149-1585 SP - 540 EP - 553 VL - 11 IS - 21 LA - en AB - Contingencies areunexpected events or crises that cause a major threat for security and safetyof a particular population. Since they are unexpected events, the demand toperform contingency operations as well as the supply that can be provided forthis can be modelled through probability distributions. Furthermore, beforecontingencies occur one may want to hold stocks beforehand. Based oninterference theory between demand, supply and stocks, one can obtain areliability of that site, i.e. probability that the site can perform theoperations assigned based on the availability of resources for theseoperations. This study develops a software design as a java application,COLONOR, which optimizes the stock allocations, i.e. maximizes the reliabilityof contingency logistics networks with a given budget and total stocks toallocate. It assumes exponential demands and supplies, and the networkstructure is such that the sites are arranged either in series or parallel. Thesoftware can employ either genetic algorithm or total enumeration techniques tosolve the resulting non-linear, non-separable and non-convex mathematical modeland enables the users to specify the problem’s parameters such as demand andsupply rates, number of sites and network structure as well as the solutionapproach. KW - Contingency Logistics Networks KW - Stock Allocation KW - Genetic Algorithm KW - Contingency Logistics Networks Optimizer N2 - Beklenmedik durumlar belirli bir nüfusun emniyeti vegüvenliği için tehdit oluşturan öngörülmemiş olaylar veya krizlerdir. Bunlaröngörülemediği için beklenmedik durumlar için gerçekleştirilecek operasyonlariçin ihtiyaç ve o anda bunlar için sağlanabilecek tedarik olasılık dağılımlarıile modellenebilir. Bununla birlikte beklenmedik durum oluşmadan, öncedenstoklar tutulmak istenebilir. İhtiyaç, talep ve stok arasındaki etkileşimteorisine göre beklenmedik durumlarda görevli üssün güvenilirliği, yani buanlarda gerçekleştirilmesi gereken operasyonların gerekli malzemeninmevcudiyetine göre gerçekleştirilebilme olasılığı, hesaplanabilir. Bu çalışmaverilen bütçe ve dağıtılacak stok sayısı ile stokların dağıtımını beklenmedikdurumlar lojistik ağlarının güvenirliğini ençoklayacak şekilde en iyileyen biryazılımı java uygulaması olarak, COLONOR, geliştirmektedir. Uygulama üssel ihtiyaç ve tedarikvarsaymakta olup, görev üslerinin seri veya paralel şekilde konumlandırıldığınıkabul etmektedir. Yazılım neticelenen doğrusal olmayan, ayrılmayan, konveksolmayan matematiksel modeli çözmek için genetik algoritma veya toplam denemetekniklerini kullanmaktadır ve kullanıcıların talep ve tedarik oranları,operasyonel üs sayısı, ağ yapısı (seri/paralel) ve çözüm tekniği (genetikalgoritma/toplam deneme) gibi problem parametrelerini belirtmesine olanaksağlamaktadır. CR - Benyoucef, L., Xie, X. and Tanonkou, G.A. (2013). “Supply chain network design with unreliable suppliers: a Lagrangian relaxation-based approach”, International Journal of Production Research, 51(21): 6435-6454. CR - Dağ, E. and Miman, M. (2014). “Beklenmedik durumlar lojistiğinin optimizasyonunda ütopya uzaklık metodu” III. Ulusal Lojistik ve Tedarik Zinciri Kongresi, Trabzon, Türkiye, 680-688. CR - Dağ, E. and Miman, M. (2015). “Multi-objective optimization of contingency logistics networks with distorted risks”, International Conference on Value Chain Sustainability, İstanbul, Turkey, 487-492. CR - Kang, Y., Batta, R. and Kwon, C. (2014). “Value-at-risk model for hazardous material transportation”, Annals of Operations Research, 222(1): 361-387. CR - Kuikka, V. and Suojanen, M. (2014). “Modelling the impact of technologies and systems on military capabilities”, Journal of Battlefield Technology, 17(2): 9-16. CR - Liu, D., Gao, Q., Huang, Z.X. and Liu, H. (2012). “Reliability of the supply and demand distribution in spare parts inventory network”, In Quality, Reliability, Risk, Maintenance, and Safety Engineering International Conference (ICQR2MSE), 1415-1417. CR - Liu, Y., Huang, H.Z. and Zuo, M.J. (2009). “Optimal selective maintenance for multi-state systems under imperfect maintenance”, In Reliability and Maintainability Symposium, Annual, IEEE, 321-326. CR - Miman, M. (2008). Modeling and analysis of the reliability of contingency logistic networks: A multi-dimensional knapsack approach, Phd.Thesis, University of Arkansas. CR - Miman, M. and Pohl, E. (2008). “Modelling and analysis of risk and reliability for a contingency logistics supply chain”, Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 222(4): 477-494. CR - Miman, M. and Pohl, E. (2012). “Multi-objective optimisation of a contingency logistics network through physical programming”, International Journal of Collaborative Enterprise, 3(1): 1-17. CR - Naikan, V.N., Datar, A. and Sarmah, S. P. (2015). “A demand–supply interference technique for modeling spare parts inventory policy”, International Journal of Management Science and Engineering Management, 10(3): 191-198. CR - Offut, E.J., Kharoufeh, J.P. and Deckro, R.F. (2006) “Distorted risk measures with application to military capability shortfalls”, Military Operation Research, 11(4): 25-39. CR - Pohl, E.A., Cassady, C. R. and Kwinn, M. (2003). “A selective maintenance model for serial manufacturing systems involving multiple maintenance actions”, In Proceedings of the 17th International Conference on Production Research, Blacksburg. CR - Rajagopalan, R. and Cassady, C.R. (2006). “An improved selective maintenance solution approach”, Journal of Quality in Maintenance Engineering, 12(2): 172-185. CR - Thomas, M.U. (2002). “Supply chain reliability for contingency operations”, In Reliability and Maintainability Symposium, Proceedings, Annual, IEEE, 61-67. CR - Thomas, M.U. (2004). “Assessing the reliability of a contingency logistics network”, Military Operations Research, 9(1): 33-41. CR - Tubis, A., Nowakowski, T. and Werbińska-Wojciechowska, S. (2017). “Supply chain vulnerability and resilience–case study of footwear retail distribution network”, Logistics and Transport, 33(1): 15-24. CR - Wang, Q., Yuan, X., Zuo, J., Zhang, J., Hong, J. and Lin, C. (2016). “Optimization of ecological industrial chain design based on reliability theory–a case study”, Journal of Cleaner Production, 124: 175-182. CR - Xiong, B., Li, B., Fan, R., Zhou, Q. and Li, W. (2017). “Modeling and simulation for effectiveness evaluation of dynamic discrete military supply chain networks”, Complexity. CR - Zhang, H., Wang, M., Tang, M. and Yang, H. (2018). “The reliability measures model of multilayer urban distribution network”, Soft Computing, 22(1): 107-118. CR - Zhang, H., Zhu, L. and Xu, S. (2016). “Modeling the city distribution system reliability with bayesian networks to ıdentify ınfluence factors”, Scientific Programming, 16. CR - Zhou, Q., Xiong, B., Li, B., Huang, J. and Lu, S. (2016). “Analysing the resilience of military supply network and simulation against disruptions”, International Journal of Engineering Systems Modelling and Simulation, 8(3): 195-204. UR - https://doi.org/10.20990/kilisiibfakademik.532274 L1 - https://dergipark.org.tr/tr/download/article-file/861740 ER -