TY - JOUR T1 - Investigation of Non-Verbal Proof Skills of Preservice Mathematics Teachers’ TT - Investigation of Nonverbal Proof Skills of Preservice Mathematics Teachers’: A Case Study / Matematik Öğretmen Adaylarının Sözsüz İspat Becerilerinin İncelenmesi: Bir Durum Çalışması AU - Demircioğlu, Handan PY - 2019 DA - May JF - Eğitim Bilimleri Araştırmaları Dergisi JO - EBAD - JESR PB - Kürşad YILMAZ WT - DergiPark SN - 2146-5266 SP - 21 EP - 39 VL - 9 IS - 1 LA - en AB - The importance of both proof andvisualization has been frequently emphasized in mathematics education. Visualproof or nonverbal proofs are defined as diagrams or illustrations that help usto see why a mathematical expression is correct and how to begin to prove theaccuracy of this statement. The aim of this research is to examine non-verbalproof skills of preservice mathematics teachers’. The study was carried outwith case studies from qualitative research designs. The participants of thestudy consisted of 53 preservice mathematics teachers in a state university inCentral Anatolia. The data were collected with a sample of 3 non-verbal proofsamples directed to preservice teachers. The analysis of the data was made byclassifying the replies of the pre-service teachers according to theirsimilarities and differences. The findings showed that preservice teachersgenerally associate images with geometric figures. In addition, it was alsoseen that those who saw the visual relationship between the given visual andmathematical expression used to show that that the expression is correctinstead of proofing the visual. KW - : Proof KW - Proof without words N2 - The importance of both proof and visualizationhas been frequently emphasized in mathematics education. Visual proof ornonverbal proofs are defined as diagrams or illustrations that help us to seewhy a mathematical expression is correct, and how to begin to prove theaccuracy of this statement. The aim of this research is to examine nonverbalproof skills of preservice mathematics teachers. The study was carried out withcase studies, one of the qualitative research designs. The participants of thestudy consisted of 53 preservice mathematics teachers at a state university inCentral Anatolia, Turkey. The data were collected with a sample of threenonverbal proof samples directed to preservice teachers. The analysis of thedata classified the preservice teachers’ responses according to theirsimilarities and differences. The findings showed that preservice teachersgenerally associate images with geometric figures. In addition, it was alsoseen that those who saw the visual relationship between the given visual andmathematical expression used it to show the expression as correct instead ofproofing the visual. CR - Altıparmak, K. & Öziş, T. (2005). Matematiksel ispat ve matematiksel muhakemenin gelişimi üzerine bir inceleme. Ege Eğitim Dergisi, (6) 1, 25–37. CR - Alsina, C. & Nelsen R. (2010). An invitation to proofs without words. European Journal of Pure and Applied Mathematics, 3(1), 118-127. CR - Ball, D. L., Hoyles, C., Jahnke, H. N., & Movshovitz-Hadar, N. (2002). The teaching of proof. In L. I. Tatsien (Ed.), Proceedings of the International Congress of Mathematicians. (pp 907–920). Beijing: Higher Education. CR - Bardelle, C. (2009). Visual proofs: an experiment. In V. Durand-Guerrier et al (Eds), Paper presented at the annual meeting of CERME6. (pp. 251-260) Lyon, France. INRP. CR - Bell, C. (2011). Proofs without words: A visual application of reasoning and proof. Mathematics Teacher, 104(1), 690-695. CR - Britz, T., Mammoliti, A. & Sørensen, H. K. (2014). Proof by picture: A selection of nice picture proofs. Parabola, 50(3), 1-8. CR - Casselman, B. (2000). Pictures and proofs. Notices of the American Mathematical Monthly, 47(10), 1257-1266. CR - Demircioğlu, H. & Polat, K. (2016). Ortaöğretim matematik öğretmeni adaylarının “sözsüz ispatlar” ile yaşadıkları zorluklar hakkındaki görüşleri. Uluslararası Türk Eğitim Bilimleri Dergisi, Ekim, 7, 81-99. CR - Demircioğlu, H. & Polat, K. (2015) Ortaöğretim matematik öğretmeni adaylarının “sözsüz ispatlar” yöntemine yönelik görüşleri. The Journal of Academic Social Science Studies, 41, Winter II, 233-254, DOI: http://dx.doi.org/10.9761/JASSS3171 CR - Doruk, M. & Güler, G. (2014). İlköğretim matematik öğretmeni adaylarının matematiksel ispata yönelik görüşleri. Uluslararası Türk Eğitim Bilimleri Dergisi, Ekim,71-93. CR - Doruk, B., Kıymaz, Y. & Horzum, T. (2012). İspat yapma ve ispatta somut modellerden yararlanma üzerine sınıf öğretmeni adaylarının görüşleri. X. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi, Niğde CR - Foo, N., Pagnucco, M. & Nayak, A.(1999) Diagrammatic Proofs, Proceedings of the16th International Joint Conference on Artificial Intelligence, (IJCAI- 99). (pp. 378 – 383).Morgan Kaufmanpp. CR - Gierdien, F. (2007). From “Proofs without words” to “Proofs that explain” in secondary mathematics. Pythagoras, 65, 53 – 62. CR - Hammack, R. H. & Lyons, D. W. (2006). Alternating series convergence: a visual proof. Teaching Mathematics and its Applications, 25(2), 58. CR - Heinze, A. & Reiss, K. (2004). The teaching of proof at lower secondary level – a video study. ZDM Mathematics Education, 36(3), 98–104 CR - Iannone, P. & Inglis, M. (2011). Undergraduate students' use of deductive arguments to solve 'prove that . . . ' tasks. In E. Swoboda (Hrsg.), Proceedings of the 7thCongress of the European Society for Research in Mathematics Education. (pp.2012-2022). CR - Jones, K. (2000). The student experience of mathematical proof at university level. International Journal of Mathematical Education in Science and Technology, 31(1), 53-60. CR - Knuth, E. J. (2002a). Secondary school mathematics teachers’ conceptions of proof. Journal for Research in Mathematics Education, 33(5), 379–405. CR - Knuth, E. J. (2002b). Teachers’ conceptions of proof in the context of secondary school mathematics. Journal for Mathematics Teacher Education, 5, 61–88. CR - Kulpa, Z. (2009). Main problems of diagrammatic reasoning. Part I: The generalization problem”, Foundations of Science 14: 75–96. CR - Miller R. L. (2012). On Proofs without Words, Retrieved from: http://www.whitman.edu/mathematics/SeniorProjectArchive/2012/Miller.pdf CR - Miyazaki M. (2000) Levels of proof in lower secondary school mathematics. Educational Studies in Mathematics, 41(1), 47-68. CR - Nelsen. R. (1993). Proofs without Words: Exercises in Visual Thinking. Washington: Mathematical Association of America. CR - Nelsen. R (2000). Proofs without Words II: More Exercises in Visual Thinking. Washington: Mathematical Association of America. CR - Özdemir, M. (2010). Nitel Veri analizi: sosyal bilimlerde yöntembilim sorunsalı üzerine bir çalışma.Eskişehir Osmangazi Üniversitesi Sosyal Bilimler Dergisi, 11(1), 323- 343. CR - Polat,K, & Demircioğlu, H.(2016).Matematik eğitiminde sözsüz ispatlar: kuramsal bir çalışma. Ziya Gökalp Eğitim Fakültesi Dergisi, Eylül, 28, 129-140 DOI: http://dx.doi.org/10.14582/DUZGEF.686 CR - Pease, A. Colton, S. Ramezani, R. Smaill, A. & Guhe, M. (2010) Using analogical representations for mathematical concept formation. Model-Based Reasoning in Science and Technology. pp 301-314| CR - Rösken, B. & Rolka, K. (2006). A picture is worth a 1000 words - the role of visualization in mathematics learning. In J. Novotná, H. Moraová, M. Krátká &N.Stehlíková (Eds.), Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 441-448). Prague, Czech Republic: PME. CR - Štrausová, I., & Hašek, R. (2013) Dynamic visual proofs using DGS. The Electronic Journal of Mathematics and Technology, 7 (1),130-142 CR - Stucky, B.(2015). Another Visual Proof of Nicomachus' Theorem. Retrieved from: http://bstucky.com/bstucky_files/nico.pdf CR - Thornton, S. (2001). A picture is worth a thousand words. New ideas in mathematics education. Proceedings of the International Conference of the Mathematics Education into the 21st Century Project CR - Uğurel, I., Moralı, H. S. & Karahan, Ö. (2011). Matematikte Yetenekli Olan Ortaöğretim Öğrencilerin Sözsüz İspat Oluşturma Yaklaşımları, I. Uluslararası Eğitim Programları ve Öğretimi Kongresi, 5-8 Ekim, Eskişehir. CR - Yıldırım, A. & Şimşek, H. (2005). Sosyal bilimlerde nitel araştırma yöntemleri (5. bs.). Ankara: Seçkin Yayıncılık. CR - Yin, R. K. (2003). Case study research design and methods (3rd ed.). Thousand Oaks: Sage Publications. UR - https://dergipark.org.tr/tr/pub/ebader/issue//535952 L1 - https://dergipark.org.tr/tr/download/article-file/708227 ER -