TY - JOUR T1 - Filyos Çayı Havzasında SWAT Modelinin Uygulaması TT - SWAT Model on Filyos Creek Basin AU - Özdemir, Kadir AU - Güngör, Ömer PY - 2019 DA - December Y2 - 2019 JF - Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi JO - NEU Fen Muh Bil Der PB - Necmettin Erbakan Üniversitesi WT - DergiPark SN - 2667-7989 SP - 90 EP - 102 VL - 1 IS - 2 LA - tr AB - Bu çalışmada, Batı KaradenizBölgesinin en büyük havzası plan Filyos Çayı havzasının hidrolojikbileşenlerinin belirlenmesi için Toprak ve Su Değerlendirme Aracı (SWAT) modelikullanılmıştır. Bu çalışmanın ilk aşamasında, Sayısal Yükseklik Modeli (SYM),arazi kullanımı, toprak ve meteorolojik veriler kullanılarak bir hidrolojikmodel oluşturulmuştur. Kurulan model, SWAT-Cup otomatik kalibrasyon programıkullanılarak, 1988-1993 yılları arasındaki dönemde kalibre edilmiş, 1988-2000 yıllarıarasındaki dönemde de doğrulanmıştır. Filyos Çayı havzasının hidrolojikbileşenler incelendiğinde, tüm çıktılar 1979-2013 döneminde azalmaeğilimindedir. Su veriminde % 35, sızma miktarında % 41 ve yeraltı suyumiktarında% 34 gibi ciddi azalmalar dikkat çekmektedir. Diğer yandan SWAT modeli kalibrasyon dönemiiçin aylık Nash-Sutcliffe, Standard Deviation of the Measured Data (RSR) vepercentage bias (PBIAS) performans göstergeleri sırasıyla 0.67, 0.57 ve -14.3,validasyon dönemi için 0.72, 0.52 ve -18.9 olarak tespit edilmiştir. Buveriler, Morisia vd. (2007) tarafından geliştirilen performans kriter tablosuile karşılaştırıldığında, SWAT kalibrasyon ve validasyon performanslarınınoldukça iyi olduğu ortaya koyulmuştur. Aynı zamanda bu çalışma Filyos Çayıhavzasındaki hidrolojik prosesleri tahmin etmek için geliştirilen SWAT’ınoldukça iyi ve güvenli bir model olduğunu göstermiştir. KW - Hidrolojik bileşenler KW - Filyos Çayı Havzası KW - SWAT modeli KW - Kalibrasyon KW - Validasyon N2 - In this study, the hydrology of theFilyos Creek Basin was modeled using Soil and Water Assessment Tool (SWAT) todetermine the hydrological components. In the first phase of the study, ahydrological model was established using digital elevation model, land use, soiland meteorological data. The model was calibrated during the period 1988-1993using the SWATCup automatic calibration program and verified during the period1988-2000. When the hydrological components are investigated, all hydrologicaloutput tends to decrease in the period 1979-2013. Serious decreases such as 35% in water yield, 41 % in infiltration amount and 34% in groundwater amount areremarkable. As the observations are compared with model results, the monthly NashSutcliffe,RSR and PBIAS performance indicators for the calibration period at Filyos Creekbasin have been 0.67, 0.57 and -14.3, respectively and for the validationperiod, 0.72, 0.52 and 18.9 respectively. It is reported that when these dataare compared with the performance criteria table performed by Morisa et al.(2007), the results of calibration and validation for SWAT are very good.Further, the results of this current study demonstrate that SWAT is verysatisfactory model for predicting to the hydrological processes in Filyos Creekbasin. CR - [1] AM. Melesse, D. Webber, A. Haiduk, SG. Seteng, X. Wang, ME. Mcclain, Modeling hydrological variability of fresh water resources in the Rio Cobre watershed, Jamaica. Catena., 120 (2014) 81-90. doi: 10.1016/j.catena.2014.04.005 CR - [2] KC. Abbaspour, E. Rouholahnejad, S. Vaghefı, R. Srinivasan, H. Yang, B. Klove, A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol., 524 (2015) 733-752. doi: 10.1016/j.jhydrol.2015.03.027 CR - [3] B. Klove, P. Ala-AhO, G. Bertrand, JJ. Gurdak, H. Kupfersberger, J. Kvorner, T. Muotka, H. Mykrä, E. Preda, P. Rossi, C. Bertacchi Uvo,., E. Velasco, P. Wachniew, M. Pulido-velázquez, Climate change impacts on groundwater and dependent ecosystems. J. Hydrol., 518 (2014) 250–266. doi: 10.1016/j.jhydrol.2013.06.037 CR - [4] H. Yang, P. Reİchert, KC. Abbaspour, AJB. Zehnder, A water resources threshold and its implications for food security. Environ. Sci. Technol., 37 (14) (2003) 3048–3054. doi: 10.1021/es0263689 CR - [5] UN Report. 2012. Managing Water Under Uncertainty and Risk. The United Nations World Water Development Report 4, vol. 1. UNESCO Publishing. CR - [6] P.R. Ehrlich, P.M. Kareiva, G.C. Daily, Securing natural capital and expanding equity to rescale civilization. Nature., 486 (2012) 68–73. doi: 10.1038/nature11157 CR - [7] S. Suweis, A. Rinaldo, A. Maritan, P. D'Odorico, Water-controlled wealth of nations. Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 4230–4233. CR - [8] B. Wible, Science for sustainable development. Science., 336 (2012) 1396–1398. doi: 10.1126/science.1224530 CR - [9] J. Alcamo, C.J. Vörösmarty, R.J. Naiman, D. Lettenmaier, C.Pahl-Wostl, A grand challenge for freshwater research: understanding the global water system. Environ. Res. Lett., 3 (2008) 1–6. doi: 10.1088/1748-9326/3/1/010202 CR - [10] H. Qi, M.S Altinakar, A conceptual framework of agricultural land use planning with BMP for integrated watershed management. J. Environ. Manag., 92 (2011) 149–155. doi: 10.1016/j.jenvman.2010.08.023 CR - [11] S. Polasky, E. Nelson, D. Pennington, K.A. Johnson, The impact of land-use change on ecosystem services, biodiversity and returns to landowners: a case study in the state of Minnesota. Environ. Resour. Econ., 48 (2011) 219–242. doi: 10.1007/s10640-010-9407-0 CR - [12] X. Zhang, L. Zhang, J. Zhao, P. Rustomji, P. Hairsine, Responses of streamflow to changes in climate and land use/cover in the Loess Plateau, China. Water Resour. Res., 44 (2008). doi: 10.1029/2007WR006711 CR - [13] M.I. Mahmoud, H.V. Gupta, S. Rajagopal, Scenario development for water resources planning and watershed management: methodology and semi-arid region case study. Environ. Model. Softw., 26 (2011) 873–885. doi: 10.1016/j.envsoft.2011.02.003 CR - [14] Z.H. Shi, L. Ai, N.F Fang, H.D. Zhu, Modeling the impacts of integrated small watershed management on soil erosion and sediment delivery: a case study in theThree Gorges Area, China. J. Hydrol., 438 (2012) 156–167. doi: 10.1016/j.jhydrol.2012.03.016 CR - [15] H. Bormann, L. Breuer, T. Gräff, J.A. Huisman, Analysing the effects of soil properties changes associated with land use changes on the simulated water balance: a comparison of three hydrological catchment models for scenario analysis. Ecol. Model., 209 (2007) 29–40. doi: 10.1016/j.ecolmodel.2007.07.004 CR - [16] Zampella, R.A., Procopio, N.A., Lathrop, R.G., Dow, C.L. 2007. Relationship of land-use, land-cover patterns and surface-water quality in the Mullica River Basin. J. Am. Water Resour. Assoc., 43 (2007) 594–604. doi:10.1111/j.1752-1688.2007.00045.x CR - [17] M. Arabi, R.S. Govindaraju, M.M. Hantush, Role of watershed subdivision on evaluation of long-term impact of best management practices on water quality. J. Am. Water Resour. Assoc., 42 (2006) 513–528. doi: 10.1111/j.1752-1688.2006.tb03854.x CR - [18] K.R. Douglas-Mankin, R. Srinivasan, J. Arnold, Soil and water assessment too l(SWAT) model: current developments and applications. Trans. ASABE., 53 (2010) 1423–1431. doi: 10.13031/2013.34915 CR - [19] M.I. Lvovitch, The global water balance. Trans. Am. Geophys. Union., 54 (1973) 28–42. doi: 10.1029/EO054i001p00028 CR - [20] A. Baumgartner, E. Reichel, The World Water Balance. Elsevier, New York, (1975) 182. CR - [21] B. Hingray, C. Picouet, A. Musy, Hydrology A Science for Engineers, ISBN: 9781466590595, CRC Press Taylor & Francis Group, USA. (2015). CR - [22] J.G. Arnold, R. Srinivasan, R.S. Muttiah, J.R. Williams, Large area hydrologic modeling and assessment. Part I: Model development. J. Am. Water Resour. Assoc., 34 (1) (1998)73–89.doi:10.1111/j.1752-1688.1998.tb05961.x CR - [23] C. He, Integration of geographic information systems and simulation model for watershed management. Environ. Model. Softw., 18 (2003) 809–813. doi: 10.1016/S1364-8152(03)00080-X CR - [24] T.J. Baker, S.N. Miller, Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol., 486 (2013) 100-111.doi:10.1016/j.jhydrol.2013.01.041 CR - [25] J. Brzozowski, Z. Miatkowski, D. Śliwiński, K. Smarzyńska, M. Śmietanka, Application of SWAT model to small agricultural catchment in Poland. J. Water Land Dev., 15 (2011) 157–166. doi: 10.2478/v10025-012-0014-z CR - [26] L. Cheng, Z.X. Xu, R. Luo, Y.J. Mi, SWAT Application in arid and semi-arid regions: a case study in Kuye River basin. Geogr. Res., 28 (2009) 65–74. doi: 10.11821/yj2009010009 CR - [27] G.O. Gül, D. Rosbjerg, Modelling of hydrologic processes and potential response to climate change through the use of a multisite SWAT. Water Environ. J., 24 (2010) 21–31.doi: 10.1111/j.1747-6593.2008.00146.x CR - [28] S.G. Thampi, K.Y. Raneesh, T.V. Surya, Influence of scale on SWAT model calibration for streamflow in a river basin in the humid tropics. Water Resour. Manag., 24: (2010)4567–4578.doi:10.1007/s11269-010-9676-y CR - [29] R. Srinivasan, X. Zhang, J. Arnold, Swat Ungauged: Hydrological Budget and Crop Yield Predictions in the Upper Mississippi River Basin. Trans. Asabe,, 53 (5) (2010) 1533-1546.doi:10.13031/2013.34903 CR - [30] Y P. Wu, J. Chen, Analyzing the Water Budget and Hydrological Characteristics and Responses to Land Use in a Monsoonal Climate River Basin in South China. Environ. Manage., 51 (6) (2013) 1174-1186. doi: 10.1007/s00267-013-0045-5 CR - [31] C. Tao, X L. Chen, J Z. Lu, P W. Gassman, S. Sabine, S P. Jose-Miguel, Assessing impacts of different land use scenarios on water budget of Fuhe River,China using SWAT model. Int. J. Agr. Biol. Eng., 8 (3): (2015) 95-109. doi: 10.3965/j.ijabe.20150803.1132 CR - [32] Ö. Güngör, S. Göncü, Application of the soil and water assessment tool model on the Lower Porsuk Stream Watershed. Hydrol. Process., 27 (3) (2013) 453-466. doi: 10.1002/hyp.9228 CR - [33] D E. Akyüz, S. Kaya, D Z. Seker, S. Kabdasli, Definition of Flood Risky Areas with Calculation of Stream Water Velocity Via Using Numerical Model: Case Studyof Filyos River, Turkey. Fresen Environ Bull., 23 (12) (2014) 3022-3028. [34] TÜBİTAK-MAM,. Havza Koruma Eylem Planlarının Hazırlanması Batı Karadeniz Havzası Proje Nihai Raporu, Çevre ve Temiz Üretim Enstitüsü, Kocaeli. (2013). CR - [35] JG. Arnold, N. Fohrer, SWAT2000: Current Capabilities and Research Opportunities in Applied Watershed Modelling. Hydrol. Process., 19(3) (2005) 563-572. doi: 10.1002/hyp.5611 CR - [36] K C. Abbaspour, C A. Johnson, M T. Van Genuchten, Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure. Vadose Zone J., 3 (4) (2004) 1340-1352. doi: 0.2113/3.4.1340 CR - [37] J. Yang, P. Reichert, K C. Abbaspour, J. Xia, H. Yang, Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J. Hydrol., 358 (1-2) (2008) 1-23. doi: 10.1016/j.jhydrol.2008.05.012 CR - [38] B A. Tolson, C A. Shoemaker, Cannonsville Reservoir Watershed SWAT2000 model development, calibration and validation. J. Hydrol., 337 (1–2) (2007) 68-86. doi: 10.1016/j.jhydrol.2007.01.017 CR - [39] J E. Nash, J V. Sutcliffe, River flow forecasting through conceptual models, I, A discussion of principles. J. Hydrol., 10: (1970) 282-290. doi: 10.1016/0022-1694(70)90255-6 CR - [40] D N. Moriasi, J G. Arnold, M W. Van Liew, R L. Bingner, R D. Harmel, T L. Veith, Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE., 50 (3): (2007) 885-900. doi: 10.13031/2013.23153 CR - [41] H V. Gupta, S. Sorooshian, P O. Yapo, Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng., 4 (2) (1999) 135-143. doi: 10.1061/(ASCE)1084-0699(1999)4:2(135) CR - [42] M.A. Andrade, C.R. Mello, S. Beskow, Hydrological simulation in a watershed with predominance of Oxisol in the Upper Grande river region, MG — Brazil. Rev. Bras. Eng. Agric. Ambient., 17 (2013) 69–76. doi: 10.1590/S1415-43662013000100010 CR - [43] M.R. Viola, C.R. Mello, M. Giongo, S. Beskow, A.F. Santos, Hydrological modeling in a watershed of the Lower Araguaia River Basin, TO. J. Biotechnol. Biodivers., 3: (2012) 38–47. CR - [44] R. Aragão, M.A.S. Cruz, J.R.A. Amorim, L.C. Mendonça, E.E. Figueiredo, V.S. Srinivasan, Sensitivity analysis of the parameters of the SWAT model and simulation of the hydrosedimentological processes in a watershed in the northeastern region of Brazil. Rev. Bras. Ciênc. Solo., 37 (2013) 1091–1102. doi:10.1590/S0100-06832013000400026 UR - https://dergipark.org.tr/tr/pub/neufmbd/issue//559228 L1 - https://dergipark.org.tr/tr/download/article-file/878176 ER -