TY - JOUR TT - Thermal stresses in a cylindrically curved FGM beam AU - Haskul, Mehmet PY - 2019 DA - June Y2 - 2019 JF - Şırnak Üniversitesi Fen Bilimleri Dergisi PB - Şırnak Üniversitesi WT - DergiPark SN - 2667-7083 SP - 25 EP - 39 VL - 1 IS - 1 LA - en KW - : Functionally graded materials (FGM); Curved beam; Thermal stress; Von Mises yield criteria N2 - Inthis study, the stress analysis of the cylindrically curved beam, which isfunctionally graded for thermal load in radial direction, has been analyticallyanalyzed. The temperature distribution varies steadily state as a function ofthe radial coordinate. The beam is assumed to be in the plane strain state. Theelasticity modulus of the functionally graded beam is assumed to vary with thepower law in relation to the thickness of the beam. In addition, the effect ofthe vary in the power law parameter and with the general mixture law, allmaterial properties of the beam (modulusof elasticity, density, thermal expansion coefficient, thermal conductivitycoefficient and yield stress) except for Poisson's ratio change in radialdirection. Thus, all material properties of the beam vary depending on thepower law. Beam; stresses under positive, negative and homogeneous temperatureswere examined. Stress analysis is considered according to Von Mises yieldcriterion. CR - Arslan, E., & Mack, W. (2014). Elastic-plastic states of a radially heated thick-walled cylindrically curved panel. Forschung im Ingenieurwesen, 78(1-2), 1-11. https://doi.org/10.1007/s10010-014-0170-1 CR - Arslan, E., & Eraslan, A. N. (2010). Analytical solution to the bending of a nonlinearly hardening wide curved bar. Acta Mechanica, 210(1-2), 71-84.https://doi.org/10.1007/s00707-009-0195-y CR - Dadras, P. (2001). Plane strain elastic–plastic bending of a strain-hardening curved beam. International journal of mechanical sciences, 43(1), 39-56.https://doi.org/10.1016/S0020-7403(99)00102-2 CR - Duc, N. D., & Van Tung, H. (2010). Nonlinear response of pressure-loaded functionally graded cylindrical panels with temperature effects. Composite Structures, 92(7), 1664-1672.https://doi.org/10.1016/j.compstruct.2009.11.033 CR - Dryden, J. (2007). Bending of inhomogeneous curved bars. International Journal of Solids and Structures, 44(11-12), 4158-4166.https://doi.org/10.1016/j.ijsolstr.2006.11.021 CR - Eraslan, A. N., & Arslan, E. (2008). A concise analytical treatment of elastic‐plastic bending of a strain hardening curved beam. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, 88(8), 600-616.https://doi.org/10.1002/zamm.200600037 CR - Eraslan, A. N., & Akis, T. (2006). On the plane strain and plane stress solutions of functionally graded rotating solid shaft and solid disk problems. Acta Mechanica, 181(1-2), 43-63.https://doi.org/10.1007/s00707-005-0276-5 CR - Kiani, Y., Shakeri, M., & Eslami, M. R. (2012). Thermoelastic free vibration and dynamic behaviour of an FGM doubly curved panel via the analytical hybrid Laplace–Fourier transformation. Acta Mechanica, 223(6), 1199-1218.https://doi.org/10.1007/s00707-012-0629-9 CR - Librescu, L., Nemeth, M. P., Starnes Jr, J. H., & Lin, W. (2000). Nonlinear response of flat and curved panels subjected to thermomechanical loads. Journal of thermal stresses, 23(6), 549-582.https://doi.org/10.1080/01495730050143134 CR - Mohammadi, M., & Dryden, J. R. (2008). Thermal stress in a nonhomogeneous curved beam. Journal of Thermal Stresses, 31(7), 587-598.https://doi.org/10.1080/01495730801978471 CR - Peng, X. L., & Li, X. F. (2010). Thermal stress in rotating functionally graded hollow circular disks. Composite Structures, 92(8), 1896-1904.https://doi.org/10.1016/j.compstruct.2010.01.008 CR - Shaffer, B. W., & House Jr, R. N. (1957). Displacements in a wide curved bar subjected to pure elastic-plastic bending. J. Appl. Mech. Trans. ASME, 24, 447-452. CR - Shaffer, B. W., & House, R. N. (1954). The elastic-plastic stress distribution within a wide curved bar subjected to pure bending. NEW YORK UNIV BRONX SCHOOL OF ENGINEERING AND SCIENCE. CR - Timoshenko, S.P. and Goodier, J.N. (1970) Theory of Elasticity, 3rd ed. McGraw-Hill, New York. UR - https://dergipark.org.tr/tr/pub/sufbd/issue//559948 L1 - https://dergipark.org.tr/tr/download/article-file/754262 ER -