TY - JOUR T1 - COMPARISON OF ATA METHOD AND CROSTON BASED METHODS ON FORECASTING OF INTERMITTENT DEMAND TT - KESİKLİ TALEPLERİN TAHMİNLENMESİNDE ATA METOT VE CROSTON TEMELLİ METOTLARIN KARŞILAŞTIRILMASI AU - Ekiz Yilmaz, Tugce AU - Yapar, Güçkan AU - Yavuz, İdil PY - 2019 DA - December DO - 10.22531/muglajsci.572444 JF - Mugla Journal of Science and Technology JO - MJST PB - Muğla Sıtkı Koçman Üniversitesi WT - DergiPark SN - 2149-3596 SP - 49 EP - 55 VL - 5 IS - 2 LA - en AB - Intermittent demandforecasting is crucial for firms and commercial activities. Recently, manyresearchers have focused on forecasting methods for intermittent demand andproposed various forecasting techniques. The most prominent methods among theseproposed techniques are the Croston method, which is based on exponentialsmoothing, and its two popular variations: SBA (Syntetos-Boylan Approximation),SBJ (Shale-Boylan-Johnston Approximation). Croston method is widely used inforecasting of intermittent demand and inventory (stock) control. Since thesedemands usually include zero values, using the ground breaking method developedby Croston in this data becomes inevitable. Nevertheless, there are someshortcomings to this method such as producing biased forecasts and for thisreason its variations have been proposed. ATA method is a recently developedforecasting method which is an alternative to exponential smoothing. In thispaper we propose a modification of ATA method that can be used for forecastingof intermittent demand. We will compare the results of the proposed approach tothose of Croston and other forecasting methods used for intermittent demandforecasting. KW - Exponential smoothing KW - Demand forecasting KW - Time series KW - Croston method KW - Intermittent demand KW - Inventory control N2 - Kesikli talep tahmini, şirketler ve ticarifaaliyetler için çok önemlidir. Son zamanlarda, birçok araştırmacı kesiklitalep için tahmin yöntemlerine odaklandı ve çeşitli tahmin teknikleriönerdiler. Bu önerilen teknikler arasında öne çıkan yöntemler, üsseldüzleştirmeye dayanan Croston yöntemi ve bu yöntemin iki türevi olan SBA(Syntetos-Boylan Yaklaşımı) ve SBJ (Shale-Boylan-Johnston Yaklaşımı)metotlarıdır.e Croston yöntemi, kesikli talep ve envanter (stok) kontrolününtahmininde yaygın olarak kullanılmaktadır. Bu talepler genellikle sıfırdeğerini içerdiğinden, bu verilerde Croston tarafından geliştirilen öne çıkanmetodun kullanılması kaçınılmaz hale gelir. Bununla birlikte; bu yöntemin,yanlı tahminler üretmek gibi bazı eksiklikleri vardır ve bu sebeple türevleriönerilmiştir. ATA metot, üssel düzleştirmeye alternatif olarak yenigeliştirilen bir tahmin metodudur. Bu çalışmada, kesikli talebin tahminedilmesi için bir ATA yönteminin bir modifikasyonunu öneriyoruz. Önerilen yaklaşımınsonuçlarını, Croston ve kesikli talep tahmini için kullanılan diğer tahminyöntemleriyle karşılaştıracağız. CR - Altay, N., & Litteral, L. A., & Rudisill, F. "Effects of correlation on intermittent demand forecasting and stock control". International Journal of Production Economics, 135(1), 275–283, 2012. CR - Boylan, J. E., & Syntetos, A. A.. "On the bias of intermittent demand estimates". Int. J. Production Economics, 71, 457–466, 2001. CR - Croston, J. D. "Forecasting and Stock Control for Intermittent Demands". Operational Research Quarterly, 23(3), 289-303, 1972. CR - Eaves, A. H. C. "Forecasting for the ordering and stock-holding of consumable spare parts," PhD Thesis, Lancaster University, 2002. CR - Hyndman, R., & Koehler, A., & Ord, K., & Snyder, R. "Forecasting with Exponential Smoothing The state Space Approach", Springer Series in Statistics, 2008. CR - Johnston, F. R., & Boylan, J. E. "Forecasting for items with intermittent demand". Journal of the Operational Research Society, 47(1), 113–121, 1996. CR - Kourentzes, N. "Intermittent demand forecasts with neural networks". International Journal of Production Economics, 143(1), 198–206, 2013. CR - Levén, E., & Segerstedt, A. "Inventory control with a modified Croston procedure and Erlang distribution". International Journal of Production Economics, 90(3), 361–367, 2004. CR - Ord, J. K., & Snyder, R. D., & Beaumont, A. "Forecasting the Intermittent Demand for Slow-Moving Items". Research Program on Forecasting, George Washington University, 2010 CR - Petropoulos, F., & Kourentzes, N., & Nikolopoulos, K. "Another look at estimators for intermittent demand". International Journal of Production Economics, 181(A), 154–161, 2016. CR - Petropoulos, F., & Nikolopoulos, K., & Spithourakis, G. P., & Assimakopoulos, V. "Empirical heuristics for improving intermittent demand forecasting". Industrial Management & Data Systems, 113(5), 683–696, 2013. CR - Rao, A. V. "A Comment on: Forecasting and Stock Control for Intermittent Demands." Journal of the Operational Research Society, 24(4), 639–640, 1973. CR - Segerstedt, A. "Inventory control with variation in lead times, especially when demand is intermittent". International Journal of Production Economics, 35(1–3), 365–372, 1994. CR - Shale, E. A., & Boylan, J. E., & Johnston, F. R. " Forecasting for intermittent demand: the estimation of an unbiased average". Journal of the Operational Research Society, 57(5), 588–592, 2006. CR - Silver, E. A. "Operations Research in Inventory Management : A Review and Critique". Operational Research, 29(4), 628–645, 1981. CR - Syntetos, A., A., & Babai, M., Z., & Dallery, Y., & Teunter, R. "Periodic control of intermittent demand items: theory and empirical analysis". Journal of the Operational Research Society, 60(5), 611–618, 2009. CR - Syntetos, A., A. "Forecasting of intermittent demand". PhD Thesis, Brunel University Business School, 2001. CR - Syntetos, A., A., & Boylan, J., E. "The accuracy of intermittent demand estimates". International Journal of Forecasting, 21(2), 303–314, 2005. CR - Teunter, R., & Sani, B. "On the bias of Croston’s forecasting method". European Journal of Operational Research, 194(1), 177-183, 2009. CR - Teunter, R., H., & Duncan, L. "Forecasting intermittent demand: a comparative study". Journal of the Operational Research Society, 60(3), 321–329, 2009. CR - Teunter, R., H, & Syntetos, A., A., & Babai, M., Z. "Intermittent demand: Linking forecasting to inventory obsolescence". European Journal of Operational Research, 214(3), 606–615, 2011. CR - Vasumathi, B., & Saradha, A. "Forecasting Intermittent Demand for Spare Parts 1". International Journal of Computer Applications, 75(11), 12–16, 2013. CR - Vereecke, A., & Verstraeten, P. "An inventory management model for an inventory consisting of lumpy items, slow movers and fast movers". International Journal of Production Economics, 35(1), 379–389, 1994. CR - Wallström, P., & Segerstedt, A. "Evaluation of forecasting error measurements and techniques for intermittent demand". International Journal of Production Economics, 128(2), 625–636, 2010. CR - Willemain, T., R., & Smart, C., N., & Schwarz, H., F. "A new approach to forecasting intermittent demand for service parts inventories". International Journal of Forecasting, 20(3), 375–387, 2004. CR - Yapar, G., & Yavuz, I., & Selamlar, H., T. "Why and How Does Exponential Smoothing Fail ? An In Depth Comparison of ATA-Simple and Simple Exponential Smoothing". Turkish Journal of Forecasting, 1(1), 30–39, 2017. CR - Yapar, G. "Modified simple exponential smoothing". Hacettepe Journal of Mathematics and Statistics. https://doi.org/10.15672/HJMS.201614320580, 2018. UR - https://doi.org/10.22531/muglajsci.572444 L1 - http://dergipark.org.tr/tr/download/article-file/817379 ER -