TY - JOUR T1 - Size Effect of Graphene Nanoparticles on the Thermal Properties of the Doped Phase Change Materials TT - Grafen Nanoparçacık Boyutunun Katkılı Faz Değişken Malzemelerin Termal Özelliklerine Etkisi AU - Temel, Ümit Nazlı AU - Erdiş, Eyüp PY - 2019 DA - September Y2 - 2019 DO - 10.35193/bseufbd.577918 JF - Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi PB - Bilecik Şeyh Edebali Üniversitesi WT - DergiPark SN - 2458-7575 SP - 123 EP - 134 VL - 6 LA - en AB - In this study, the size effects of the Graphenenanoparticles (GNP) doped into a paraffin type organic phase change material(PCM) on thermal properties were examined. The thermal conductivities,melting/solidification temperatures and melting/solidification latent heats ofthe GNP/PCM composites, which were obtained by incorporating GNP nanoparticleswith three different sizes into an organic PCM in mass fractions of 1%, 3% and5%, were measured. The changes obtained in thermal properties were determined byreferring to the non-doped PCM data. The results obtained showed that in lowPCM mass fractions, thermal conductivity enhancement was a function of bothsurface area and thickness of the GNP nanoparticles. In addition, it wasdetermined that thicker nanoparticles formed a more efficient conductionnetwork at high PCM fractions. The reflections of the enhancements obtained inthermal conductivity on thermal performance were also determined in the study. Enhancements in thermalconductivity depending on the increase in thickness of GNP were obtained as 6.3%,107.5% and 113.7% for 5% GNP(1-5nm)/ PCM, 5% GNP(6-8nm)/PCM and 5% GNP(11-15nm)/PCMcomposites, respectively. These thermal conductivity enhancements resultedperformance increase in the energy storage unit around 5.5%, 18.3% and 20%respectively. KW - PCM KW - Thermal conductivity KW - Size effect KW - Graphene KW - Nanoparticles N2 - Bu çalışmada, parafintipi bir organik Faz Değişken Malzeme (FDM) içerisine katkılanan Grafennanoparçacık boyutunun termal özellikler üzerindeki etkileri incelenmiştir. Üçfarklı boyuta sahip GNP nanoparçacıkların organik bir FDM içerisine %1, %3 ve%5 kütle bölüntülerinde katkılanması suretiyle elde edilen GNP/FDMkompozitlerinin ısıl iletkenlik, erime/katılaşma sıcaklıkları veerime/katılaşma gizli ısıları ölçülmüştür. Termal özelliklerde elde edilendeğişimler katkılanmamış FDM verileri referans alınarak belirlenmiştir. Eldeedilen sonuçlar, düşük GNP kütle bölüntülerinde ısıl iletkenlikiyileştirmesinin hem GNP nanoparçacık yüzey alanının hem de kalınlığının birfonksiyonu olduğunu göstermiştir. Buna ilave olarak, daha kalınnanoparçacıkların yüksek FDM kütle bölüntülerinde daha etkin bir iletim ağı oluşturduklarıbelirlenmiştir. Çalışmada ayrıca ısıl iletkenlikte elde edilen iyileştirmelerintermal performansa yansımaları da belirlenmiştir. GNP nanoparçacıkkalınlığındaki artışa bağlı olarak ısıl iletkenlikteki iyileşmeler; 5%GNP(1-5nm)/ FDM, 5% GNP(6-8nm)/FDM ve 5% GNP(11-15nm)/FDM kompozitleri içinsırasıyla %6.3, %107.5 ve %113.7 olarakelde edilmiştir. Bu ısıl iletkenlik iyileştirmeleri, bir enerji depolamabiriminde sırasıyla %5.5,% 18.3 ve % 20 civarında performans artışısağlamıştır. CR - L. Liu, D. Su, Y. Tang, and G. Fang, “Thermal conductivity enhancement of phase change materials for thermal energy storage: A review,” Renew. Sustain. Energy Rev., vol. 62, pp. 305–317, 2016. CR - J. P. Hadiya and A. K. N. Shukla, “Experimental thermal behavior response of paraffin wax as storage unit,” J. Therm. Anal. Calorim., vol. 124, no. 3, pp. 1511–1518, 2016. CR - N. Lorwanishpaisarn, P. Kasemsiri, P. Posi, and P. Chindaprasirt, “Characterization of paraffin/ultrasonic-treated diatomite for use as phase change material in thermal energy storage of buildings,” J. Therm. Anal. Calorim., vol. 128, no. 3, pp. 1293–1303, 2017. CR - D. Zhou, C. Y. Zhao, and Y. Tian, “Review on thermal energy storage with phase change materials (PCMs) in building applications,” Appl. Energy, vol. 92, pp. 593–605, 2012. CR - Y. Yuan, T. Li, N. Zhang, X. Cao, and X. Yang, “Investigation on thermal properties of capric–palmitic–stearic acid/activated carbon composite phase change materials for high-temperature cooling application,” J. Therm. Anal. Calorim., vol. 124, pp. 881-888, 2016. CR - S. Al Hallaj and J. R. Selman, “A Novel Thermal Management System for Electric Vehicle Batteries Using Phase-Change Material,” J. Electrochem. Soc., vol. 147, pp. 3231-3236, 2000. CR - S. A. Khateeb, M. M. Farid, J. R. Selman, and S. Al-Hallaj, “Design and simulation of a lithium-ion battery with a phase change material thermal management system for an electric scooter,” J. Power Sources, vol. 128, pp. 292-307, 2004. CR - C. V. Hémery, F. Pra, J. F. Robin, and P. Marty, “Experimental performances of a battery thermal management system using a phase change material,” J. Power Sources, vol. 270, pp. 349-358, 2014. CR - U. Stritih, “An experimental study of enhanced heat transfer in rectangular PCM thermal storage,” Int. J. Heat Mass Transf., vol. 47, pp. 2841-2847,2004. CR - F. Agyenim, P. Eames, and M. Smyth, “A comparison of heat transfer enhancement in a medium temperature thermal energy storage heat exchanger using fins,” Sol. Energy, vol. 83, pp. 1509-1520, 2009. CR - M. Xiao, B. Feng, and K. Gong, “Preparation and performance of shape stabilized phase change thermal storage materials with high thermal conductivity,” Energy Convers. Manag., vol.43, pp. 103-108, 2002. CR - J. Yang, L. Yang, C. Xu, and X. Du, “Experimental study on enhancement of thermal energy storage with phase-change material,” Appl. Energy, vol. 169, pp. 164-176, 2016. CR - J. F. Wang, H. Q. Xie, Y. Li, and Z. Xin, “PW based phase change nanocomposites containing gamma-Al(2)O(3),” J. Therm. Anal. Calorim., vol. 102, pp.709-713, 2010. CR - C. J. Ho and J. Y. Gao, “Preparation and thermophysical properties of nanoparticle-in-paraffin emulsion as phase change material,” Int. Commun. Heat Mass Transf., vol. 36, pp. 467-470, 2009. CR - Ü. N. Temel and B. Y. ÇİFTÇİ, “Determination of Thermal Properties of A82 Organic Phase Change Material Embedded with Different Type Nanoparticles,” Isı Bilimi ve Tekniği Dergisi Vol. 38 pp. 75–85, 2018. CR - J. Wang, H. Xie, Z. Xin, and Y. Li, “Increasing the thermal conductivity of palmitic acid by the addition of carbon nanotubes,” Carbon N. Y., vol. 48, pp. 3979-3986, 2010. CR - Z. T. Yu et al., “Increased thermal conductivity of liquid paraffin-based suspensions in the presence of carbon nano-additives of various sizes and shapes,” Carbon N. Y., vol. 53, pp. 277-285, 2013. CR - L. W. Fan et al., “Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials,” Appl. Energy, vol. 110, pp. 163-172, 2013. CR - Y. Cui, C. Liu, S. Hu, and X. Yu, “The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials,” Sol. Energy Mater. Sol. Cells, vol. 95, pp. 1208-1212, 2011. CR - J. N. Shi et al., “Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives,” Carbon N. Y.,vol. 51, pp. 365-372, 2013. CR - J. Wang, H. Xie, and Z. Xin, “Thermal properties of paraffin based composites containing multi-walled carbon nanotubes,” Thermochim. Acta, vol. 488, pp. 39-42, 2009. CR - J. Wang, H. Xie, Z. Xin, Y. Li, and L. Chen, “Enhancing thermal conductivity of palmitic acid based phase change materials with carbon nanotubes as fillers,” Sol. Energy, vol. 84, pp. 339-344, 2010. UR - https://doi.org/10.35193/bseufbd.577918 L1 - https://dergipark.org.tr/tr/download/article-file/814398 ER -